The function and mechanisms of voltage-gated proton channel Hv1 in spinal cord injury
电压门控质子通道Hv1在脊髓损伤中的作用及机制
基本信息
- 批准号:10617804
- 负责人:
- 金额:$ 23.38万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-05-15 至 2025-04-30
- 项目状态:未结题
- 来源:
- 关键词:AcidosisAcuteAddressAffectAstrocytesAttenuatedBrainBrain InjuriesBrain IschemiaCell DeathCentral Nervous SystemChargeChronicClinicalCompensationComplexContusionsCouplingCytoplasmDataDevelopmentElectronsFailureFunctional disorderFutureGenerationsGeneticGoalsHyperesthesiaImmune systemImpairmentIn VitroInflammationInflammatoryInjuryInterferonsInterventionIon ChannelKnockout MiceMediatingMicrogliaModelingMolecularMusNADPNADPH OxidaseNeurogliaNeurologicNeurologic DysfunctionsNeurological outcomeNeuronsPathologicPathway interactionsPhagocytesPhenotypeProcessProductionProtonsReactive Oxygen SpeciesRecoveryRecovery of FunctionReportingResearchRespiratory BurstRestRoleSignal PathwaySignal TransductionSpinal Cord ContusionsSpinal cord injuryTestingTherapeutic InterventionTransgenic MiceUp-Regulationeffective therapyfunctional improvementfunctional outcomesgene therapygenetic approachglial activationimprovedin vivoinhibitorinnovative technologiesinsightmouse modelneuroinflammationneuron lossneuroprotectionneurotoxicnew therapeutic targetnovelnovel therapeuticspainful neuropathypharmacologicvoltage
项目摘要
Project Summary
Despite considerable research over the past 30 years, there is still no established effective treatment to
improve recovery following spinal cord injury (SCI). In part, this reflects incomplete understanding of the
complex secondary pathobiological mechanisms involved. The aim of our research is to understand the cellular
and molecular mechanisms responsible for post-injury neuroinflammation in order to allow future development
of novel therapies. The voltage-gated proton channel Hv1 is a newly discovered ion channel, highly expressed
in resting microglia of the brain. Under pathological conditions, microglial Hv1 is required for NADPH oxidase
(NOX)-dependent generation of ROS (reactive oxygen species) by providing charge compensation for
exported electrons and relieving intracellular acidosis. Thus, Hv1 is a unique target for controlling multiple NOX
activities and ROS production. However, neither the precise signaling mechanisms underlying this finding nor
critical role of Hv1 in the pathophysiology of SCI are fully understood. Based on our preliminary data, we will
test the hypothesis that microglial Hv1 functions as a key mechanism in neuroinflammation, through altered
NOX2/ROS/IFN- signaling that modulates microglia-astrocyte interaction, thus affecting long-term
neurological outcomes after SCI.
We will use systemic or microglial Hv1 KO, microglial NOX2 KO transgenic mice and in vivo and in vitro
innovatively technologies to determine the mechanisms of SCI-triggered Hv1 elevation on post-injury
neuroinflammation. Aim 1 will determine the function and mechanisms of the Hv1 in neuroinflammation
after SCI. Multiple quantitative assessments of microglia-mediated neuroinflammation will be combined with
genetic or pharmacological intervention targeting Hv1 to test the hypothesis that SCI-induced microglial Hv1
activation mediates detrimental neuroinflammation and functional deficits through altered microglial
NOX2/ROS signaling. Aim 2 will elucidate the role of microglial NOX2 in post-injury neuroinflammation.
We will utilize genetic intervention to delete Hv1-dependent up-regulation of NOX2 in microglia, and evaluate
the effects on microglial NOX2 coupling to Hv1 on neuroinflammation after SCI. Aim 3 will identify critical
role of Hv1/NOX2-derived ROS/IFN- in SCI-chronic neuroinflammation through microglia-astrocyte
interaction. Complimentary cellular, molecular, and genetic approaches will be used to test the hypothesis
that Hv1/NOX2-mediated microglial ROS activates pro-inflammatory astrocytes resulting in secreting IFN that
in turn reinforces microglial inflammation, thus contributes to astrocytes dysfunction and neuronal damage.
Our study will be the first to implicate microglial Hv1/NOX2/ROS/IFN- signaling in the pathophysiology
of SCI, leading to novel treatment approaches for SCI. Given the proposed roles for Hv1 in other inflammatory
models, Hv1 signaling represents a generic mechanism relevant to other neuroinflammatory states.
项目摘要
尽管在过去的30年里进行了大量的研究,但仍然没有建立有效的治疗方法,
改善脊髓损伤(SCI)后恢复。在某种程度上,这反映了对
涉及复杂的继发性病理生物学机制。我们研究的目的是了解细胞
以及负责损伤后神经炎症的分子机制,
新的疗法。电压门控质子通道Hv 1是一种新发现的离子通道,高表达
大脑中的小胶质细胞。在病理条件下,NADPH氧化酶需要小胶质细胞Hv 1
(NOX)依赖性的ROS(活性氧物质)的产生,通过提供电荷补偿,
输出电子和缓解细胞内酸中毒。因此,Hv 1是用于控制多种NOx的唯一目标
活性和ROS的产生。然而,这一发现背后的精确信号机制,
Hv 1在SCI病理生理学中的关键作用已被充分理解。根据我们的初步数据,
测试假设小胶质细胞Hv 1作为神经炎症的关键机制,通过改变
NOX 2/ROS/IFN-γ信号调节小胶质细胞-星形胶质细胞相互作用,从而影响长期
脊髓损伤后的神经功能
我们将使用全身性或小胶质细胞Hv 1 KO、小胶质细胞NOX 2 KO转基因小鼠和在体内和体外
创新技术,以确定SCI触发的Hv 1升高的机制,
神经炎症目的1将确定Hv 1在神经炎症中的功能和机制
SCI之后对小胶质细胞介导的神经炎症的多项定量评估将与
以Hv 1为靶点的遗传或药物干预,以检验SCI诱导的小胶质细胞Hv 1
激活通过改变小胶质细胞介导有害的神经炎症和功能缺陷
NOX 2/ROS信号传导。目的2阐明小胶质细胞NOX 2在损伤后神经炎症中的作用。
我们将利用遗传干预来消除小胶质细胞中Hv 1依赖的NOX 2上调,并评估
小胶质细胞NOX 2与Hv 1偶联对SCI后神经炎症的影响。目标3将确定关键
Hv 1/NOX 2源性ROS/IFN-γ在通过小胶质-星形胶质细胞的SCI慢性神经炎症中的作用
互动互补的细胞,分子和遗传学方法将被用来测试的假设
Hv 1/NOX 2介导的小胶质细胞ROS激活促炎性星形胶质细胞,导致分泌IFN γ,
反过来又加强小胶质细胞炎症,从而导致星形胶质细胞功能障碍和神经元损伤。
我们的研究将是第一个涉及小胶质细胞Hv 1/NOX 2/ROS/IFN-γ信号转导的病理生理学。
导致新的SCI治疗方法。考虑到Hv 1在其他炎症中的作用,
模型中,Hv 1信号转导代表了与其他神经炎症状态相关的一般机制。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Spinal cord injury alters microRNA and CD81+ exosome levels in plasma extracellular nanoparticles with neuroinflammatory potential.
- DOI:10.1016/j.bbi.2020.12.007
- 发表时间:2021-03
- 期刊:
- 影响因子:0
- 作者:Khan NZ;Cao T;He J;Ritzel RM;Li Y;Henry RJ;Colson C;Stoica BA;Faden AI;Wu J
- 通讯作者:Wu J
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Junfang Wu其他文献
Junfang Wu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Junfang Wu', 18)}}的其他基金
The function and mechanisms of voltage-gated proton channel Hv1 in spinal cord injury
电压门控质子通道Hv1在脊髓损伤中的作用及机制
- 批准号:
9902687 - 财政年份:2020
- 资助金额:
$ 23.38万 - 项目类别:
The function and mechanisms of voltage-gated proton channel Hv1 in spinal cord injury
电压门控质子通道Hv1在脊髓损伤中的作用及机制
- 批准号:
10164879 - 财政年份:2020
- 资助金额:
$ 23.38万 - 项目类别:
The function and mechanisms of voltage-gated proton channel Hv1 in spinal cord injury
电压门控质子通道Hv1在脊髓损伤中的作用及机制
- 批准号:
10398137 - 财政年份:2020
- 资助金额:
$ 23.38万 - 项目类别:
The Function and Mechanisms of Autophagy in Spinal Cord Injury
自噬在脊髓损伤中的功能和机制
- 批准号:
9174652 - 财政年份:2016
- 资助金额:
$ 23.38万 - 项目类别:
The Function and Mechanisms of Autophagy in Spinal Cord Injury
自噬在脊髓损伤中的功能和机制
- 批准号:
9271264 - 财政年份:2016
- 资助金额:
$ 23.38万 - 项目类别:
The new roles of the autophagy-lysosomal pathway in spinal cord injury-mediated dementia
自噬-溶酶体途径在脊髓损伤介导的痴呆中的新作用
- 批准号:
10114910 - 财政年份:2016
- 资助金额:
$ 23.38万 - 项目类别:
相似海外基金
Acute senescence: a novel host defence counteracting typhoidal Salmonella
急性衰老:对抗伤寒沙门氏菌的新型宿主防御
- 批准号:
MR/X02329X/1 - 财政年份:2024
- 资助金额:
$ 23.38万 - 项目类别:
Fellowship
Transcriptional assessment of haematopoietic differentiation to risk-stratify acute lymphoblastic leukaemia
造血分化的转录评估对急性淋巴细胞白血病的风险分层
- 批准号:
MR/Y009568/1 - 财政年份:2024
- 资助金额:
$ 23.38万 - 项目类别:
Fellowship
Combining two unique AI platforms for the discovery of novel genetic therapeutic targets & preclinical validation of synthetic biomolecules to treat Acute myeloid leukaemia (AML).
结合两个独特的人工智能平台来发现新的基因治疗靶点
- 批准号:
10090332 - 财政年份:2024
- 资助金额:
$ 23.38万 - 项目类别:
Collaborative R&D
Cellular Neuroinflammation in Acute Brain Injury
急性脑损伤中的细胞神经炎症
- 批准号:
MR/X021882/1 - 财政年份:2024
- 资助金额:
$ 23.38万 - 项目类别:
Research Grant
STTR Phase I: Non-invasive focused ultrasound treatment to modulate the immune system for acute and chronic kidney rejection
STTR 第一期:非侵入性聚焦超声治疗调节免疫系统以治疗急性和慢性肾排斥
- 批准号:
2312694 - 财政年份:2024
- 资助金额:
$ 23.38万 - 项目类别:
Standard Grant
Combining Mechanistic Modelling with Machine Learning for Diagnosis of Acute Respiratory Distress Syndrome
机械建模与机器学习相结合诊断急性呼吸窘迫综合征
- 批准号:
EP/Y003527/1 - 财政年份:2024
- 资助金额:
$ 23.38万 - 项目类别:
Research Grant
FITEAML: Functional Interrogation of Transposable Elements in Acute Myeloid Leukaemia
FITEAML:急性髓系白血病转座元件的功能研究
- 批准号:
EP/Y030338/1 - 财政年份:2024
- 资助金额:
$ 23.38万 - 项目类别:
Research Grant
KAT2A PROTACs targetting the differentiation of blasts and leukemic stem cells for the treatment of Acute Myeloid Leukaemia
KAT2A PROTAC 靶向原始细胞和白血病干细胞的分化,用于治疗急性髓系白血病
- 批准号:
MR/X029557/1 - 财政年份:2024
- 资助金额:
$ 23.38万 - 项目类别:
Research Grant
ロボット支援肝切除術は真に低侵襲なのか?acute phaseに着目して
机器人辅助肝切除术真的是微创吗?
- 批准号:
24K19395 - 财政年份:2024
- 资助金额:
$ 23.38万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Collaborative Research: Changes and Impact of Right Ventricle Viscoelasticity Under Acute Stress and Chronic Pulmonary Hypertension
合作研究:急性应激和慢性肺动脉高压下右心室粘弹性的变化和影响
- 批准号:
2244994 - 财政年份:2023
- 资助金额:
$ 23.38万 - 项目类别:
Standard Grant














{{item.name}}会员




