Magnetically Templated Regeneration Scaffolds for Nerve Injury Repair

用于神经损伤修复的磁模板再生支架

基本信息

  • 批准号:
    9086452
  • 负责人:
  • 金额:
    $ 21.91万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2015
  • 资助国家:
    美国
  • 起止时间:
    2015-07-01 至 2018-06-30
  • 项目状态:
    已结题

项目摘要

 DESCRIPTION (provided by applicant): Despite significant efforts developing biomaterials to direct axon growth, decellularized nerve allografts and nerve autografts remain the only clinical alternatives for repairing peripheral nerve injuries with transected nerve gaps of 2-12 cm. It is our belief that this is because many biomaterials for nerve regeneration do not faithfully reproduce the tubular microstructure of natural nerve extracellular matrix. Specifically, success of decellularized nerve allografts in repairing nerve gaps of ~5 cm is in large part due to preservation of aligned ~10 µm diameter basal lamina tubes that direct axon growth and nerve reconnection. Unfortunately, nerve allografts require expensive processing procedures, limiting broad patient access due to high cost, and pose the risk of disease transmission. On the other hand, nerve autografts result in donor site morbidity and only 40- 50% success rates. Hence, there is a critical need for novel approaches to engineer regeneration scaffolds that may replace allografts and autografts in peripheral nerve injury repair. The goal of this exploratory/development project is to develop and test a new approach to obtain nerve regeneration scaffolds consisting of naturally derived crosslinked hydrogels with embedded tubular microstructure mimicking the nerve basal lamina. The proposed approach, magnetic templating, consists of dispersion of magnetic alginate microparticles in a pre-hydrogel solution, alignment of the microparticles into gap-spanning columnar structures with a magnetic field, hydrogel crosslinking in the field, and dissolution of the magnetic alginate microparticles, leavin behind aligned, continuous and interconnected gap-spanning channels with diameters that make them suitable for directing axon growth. Magnetic templating has the advantages of: (i.) aligned continuous tubular microstructure that mimics nerve basal lamina tubes in diameter and length; (ii.) compatibility with natural-based hydrogels, resulting in scaffolds with minimal immunogenicity or toxicity; (iii.) compatibility with biomolecules, enabling future incorporation o chemical and biological cues to further guide nerve growth; (iv.) scalability to lengths in centimeters; and (v.) process simplicity and scalability that will reduce cost and broaden patient base. We will achieve the project's goal through two specific aims designed to test our hypotheses: (AIM 1) that tubular structure alignment, diameter, and connectivity are determined by overall concentration, diameter and magnetic nanoparticle content of the magnetic alginate microparticles, and the magnitude and direction of the magnetic field applied during the templating process; and (AIM 2) that incorporation of linearly oriented channels through magnetic templating will increase axonal extension into hyaluronan/collagen hydrogels in vitro and in vivo. Completion of these studies will inform and motivate future phases of research to develop and translate magnetically templated regeneration scaffolds as alternatives for nerve allografts and autografts in peripheral nerve injury repair. This approach also has broad applicability for other tissue repair applications.
 描述(由适用提供):尽管为直接轴突生长开发了生物材料,但脱细胞神经移植和神经自体移植仍然是修复周围神经损伤的唯一临床替代方案,该神经损伤具有2-12 cm的跨性神经间隙。我们相信这是因为许多用于神经再生的生物材料不会忠实地重现天然神经细胞外基质的管状微观结构。具体而言,脱细胞神经合金在修复〜5 cm的神经间隙中的成功很大程度上是由于保留了直径〜10 µm直径的基本层层管,该层管直径为轴突生长和神经重新连接。不幸的是,神经合金需要昂贵的加工程序,从而限制了由于成本高而限制了患者的广泛通道,并构成了传播疾病的风险。另一方面,神经自体移植会导致供体部位发病率,仅40-50%的成功率。因此,对新方法进行了新的方法来设计新方法,以替代外周神经损伤修复中的同种异体移植和自体移植。该探索/开发项目的目的是开发和测试一种新的方法,以获得神经再生支架,这些脚手架由自然衍生的交联水凝胶和嵌入式管状微观结构组成,模仿神经基本的层。提出的方法,磁模板,包括磁性算法微粒的分散,将微粒子的对准与间隙跨度的柱状结构相反,并在磁场上进行水凝胶交联,在田间中交联,并散发出磁性算法的脱位,并置于磁性固定,并使其脱离,并置于隔离状态,互联网,互联网,互联网,gap是互联网的,gap gap gap gap gap gap。指导轴突生长。磁模板具有以下优点:(i。)对齐连续的管状微观结构,模仿神经基本的层状管的直径和长度; (ii。)与天然水凝胶的兼容性,导致脚手架具有最小的免疫原性或毒性; (iii。)与生物分子的兼容性,从而使未来的化学和生物学提示能够进一步指导神经生长; (iv。)可伸缩到长度为厘米的长度; (v。)流程简单性和可扩展性将降低成本并扩大患者基础。我们将通过旨在测试我们的假设的两个特定目的来实现项目的目标:(目标1)磁算法微粒的整体浓度,直径和磁性纳米粒子含量确定了管状结构对齐,直径和连通性,以及在模板过程中应用磁场的大小和方向的磁性算法和方向; (AIM 2)通过磁模板合并通道将在体外和体内增加轴突延伸到透明质酸/胶原水凝胶中。这些研究的完成将为并激发研究的未来阶段,以开发和翻译磁模板的再生支架,作为周围神经损伤修复中神经同种异体移植和自体移植的替代方法。该方法还具有针对其他组织修复应用的广泛可用性。

项目成果

期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Preparation and evaluation of microfluidic magnetic alginate microparticles for magnetically templated hydrogels.
  • DOI:
    10.1016/j.jcis.2019.11.040
  • 发表时间:
    2019-11
  • 期刊:
  • 影响因子:
    9.9
  • 作者:
    Ishita Singh;Christopher S Lacko;Zhiyuan Zhao;C. Schmidt;C. Rinaldi
  • 通讯作者:
    Ishita Singh;Christopher S Lacko;Zhiyuan Zhao;C. Schmidt;C. Rinaldi
Magnetic particle templating of hydrogels: engineering naturally derived hydrogel scaffolds with 3D aligned microarchitecture for nerve repair.
  • DOI:
    10.1088/1741-2552/ab4a22
  • 发表时间:
    2020-02-12
  • 期刊:
  • 影响因子:
    4
  • 作者:
    Lacko CS;Singh I;Wall MA;Garcia AR;Porvasnik SL;Rinaldi C;Schmidt CE
  • 通讯作者:
    Schmidt CE
Development of a magnetically aligned regenerative tissue-engineered electronic nerve interface for peripheral nerve applications.
  • DOI:
    10.1016/j.biomaterials.2021.121212
  • 发表时间:
    2021-12
  • 期刊:
  • 影响因子:
    14
  • 作者:
  • 通讯作者:
Processing-Size Correlations in the Preparation of Magnetic Alginate Microspheres Through Emulsification and Ionic Crosslinking.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Carlos M Rinaldi-Ramos其他文献

Carlos M Rinaldi-Ramos的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Carlos M Rinaldi-Ramos', 18)}}的其他基金

NIH Administrative Supplement to Promote Diversity in Health Related Research
NIH 促进健康相关研究多样性的行政补充
  • 批准号:
    10876754
  • 财政年份:
    2023
  • 资助金额:
    $ 21.91万
  • 项目类别:
Nanoparticles to Track T Cell Immunotherapy Using Magnetic Particle Imaging
使用磁粒子成像追踪 T 细胞免疫治疗的纳米粒子
  • 批准号:
    10365339
  • 财政年份:
    2022
  • 资助金额:
    $ 21.91万
  • 项目类别:
Nanoparticles for In Vivo Labeling of T Cells During Cancer Immunotherapy
用于癌症免疫治疗期间 T 细胞体内标记的纳米颗粒
  • 批准号:
    10450938
  • 财政年份:
    2022
  • 资助金额:
    $ 21.91万
  • 项目类别:
Nanoparticles for In Vivo Labeling of T Cells During Cancer Immunotherapy
用于癌症免疫治疗期间 T 细胞体内标记的纳米颗粒
  • 批准号:
    10634620
  • 财政年份:
    2022
  • 资助金额:
    $ 21.91万
  • 项目类别:
Nanoparticles to Track T Cell Immunotherapy Using Magnetic Particle Imaging
使用磁粒子成像追踪 T 细胞免疫治疗的纳米粒子
  • 批准号:
    10621153
  • 财政年份:
    2022
  • 资助金额:
    $ 21.91万
  • 项目类别:
Innovative Non-Invasive Imaging of Traumatic Brain Injury
创伤性脑损伤的创新非侵入性成像
  • 批准号:
    10527640
  • 财政年份:
    2022
  • 资助金额:
    $ 21.91万
  • 项目类别:
Magnetically Templated Regeneration Scaffolds for Nerve Injury Repair
用于神经损伤修复的磁模板再生支架
  • 批准号:
    8954155
  • 财政年份:
    2015
  • 资助金额:
    $ 21.91万
  • 项目类别:
Modeling of the Magnetic Particle Imaging Signal Due to Magnetic Nanoparticles
磁性纳米粒子产生的磁性粒子成像信号的建模
  • 批准号:
    9024525
  • 财政年份:
    2015
  • 资助金额:
    $ 21.91万
  • 项目类别:

相似国自然基金

菌根真菌介导的同种密度制约对亚热带森林群落物种共存的影响
  • 批准号:
    32371600
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
B7H4-LILRB4信号调控B细胞代谢重编程机制在同种抗体产生及防治AMR中的作用
  • 批准号:
    82371792
  • 批准年份:
    2023
  • 资助金额:
    49.00 万元
  • 项目类别:
    面上项目
利用HERV-K(HML-2)多态性探讨不同种族群体的遗传多样性和疾病易感性差异
  • 批准号:
    32200491
  • 批准年份:
    2022
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目
抗骨髓瘤的新型同种异体嵌合抗原受体T(CAR T)细胞疗法研发
  • 批准号:
    82270210
  • 批准年份:
    2022
  • 资助金额:
    68 万元
  • 项目类别:
    面上项目
利用HERV-K(HML-2)多态性探讨不同种族群体的遗传多样性和疾病易感性差异
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Developing a robust native extracellular matrix to improve islet function with attenuated immunogenicity for transplantation
开发强大的天然细胞外基质,以改善胰岛功能,并减弱移植的免疫原性
  • 批准号:
    10596047
  • 财政年份:
    2023
  • 资助金额:
    $ 21.91万
  • 项目类别:
Mechanisms of accelerated calcification and structural degeneration of implantable biomaterials in pediatric cardiac surgery
小儿心脏手术中植入生物材料加速钙化和结构退化的机制
  • 批准号:
    10655959
  • 财政年份:
    2023
  • 资助金额:
    $ 21.91万
  • 项目类别:
Developing imaging nanoprobes to advance prognosis of kidney fibrosis
开发成像纳米探针以改善肾纤维化的预后
  • 批准号:
    10574964
  • 财政年份:
    2023
  • 资助金额:
    $ 21.91万
  • 项目类别:
Development of engineered fasciocutaneous skin flaps
工程筋膜皮瓣的开发
  • 批准号:
    10715063
  • 财政年份:
    2023
  • 资助金额:
    $ 21.91万
  • 项目类别:
Patient-Derived Kidney Organoids For Modeling Kidney Injury
用于肾损伤建模的患者肾脏类器官
  • 批准号:
    10663719
  • 财政年份:
    2023
  • 资助金额:
    $ 21.91万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了