Modeling of the Magnetic Particle Imaging Signal Due to Magnetic Nanoparticles

磁性纳米粒子产生的磁性粒子成像信号的建模

基本信息

  • 批准号:
    9024525
  • 负责人:
  • 金额:
    $ 18万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2015
  • 资助国家:
    美国
  • 起止时间:
    2015-03-01 至 2018-01-31
  • 项目状态:
    已结题

项目摘要

 DESCRIPTION (provided by applicant): Magnetic Particle Imaging (MPI) is a new tomographic imaging technique that maps the spatial distribution of iron oxide magnetic nanoparticles (MNPs) in real time and with spatial resolution that is on par or better than other biomedical imaging techniques. Because iron oxide MNPs are nontoxic, MPI is a safe imaging alternative for Chronic Kidney Disease (CKD) patients and due to its sensitivity it is suitable for angiography, cell tracking, cancer imaging, inflammation imaging, imaging major organs, and imaging of coronary arteries. Recently attention has shifted towards development of MNPs with ideal MPI signal characteristics. Unfortunately, these efforts are hampered by a lack of theories that predict the MPI signal due to MNP tracers, taking into account the finite relaxation dynamics of MNPs in time-varying magnetic fields typical of MPI. Because of this, most prior work on development of MNP MPI tracers has been limited to trial-and-error characterization of synthesized particles, without a theory guiding their rational design. What is needed is a solid theoretical foundation that will allow rational design of future generations of MNP MPI tracers and tuning of MPI magnetic field conditions to yield optimal image contrast and resolution. The proposed research will develop a theoretical foundation relating MNP properties (e.g., core size, hydrodynamic diameter, domain magnetization, magnetic anisotropy, particle-particle interactions, etc.) and MPI magnetic field conditions (strength of bias and excitation field, magnetic field gradient strength, scan rate, etc.) to the MPI signal strength and resolution. The proposed approach is unique and distinct from other work because we will develop stochastic computer simulation models of the response of MNPs to the magnetic fields typical of MPI, taking into account nanoparticle translation, physical rotation, internal dipole rotation, and particle-particle magnetic interactions. These models will enable systematic study of the large parameter space of particle properties and magnetic field conditions typical of MPI. The proposed work is significant because it will provide a much-needed theoretical understanding of the relation- ship between particle properties, MPI magnetic field conditions, and MPI signal strength and resolution. The proposed work is also significant because it will yield rules for the rational design of MNP MPI tracers with optimal signal strength and resolution and could also suggest novel applications of MPI beyond imaging of MNP tracer location and motion. The proposed work is innovative because it will yield this theoretical foundation through development of computer simulation platforms to model the response of MNPs to the magnetic fields generated in MPI through a combination of Brownian dynamics simulations of particle translation and rotation and the Landau-Lifshitz-Gilbert equation describing internal magnetic dipole rotation, an approach that is currently unexplored. The proposed work is also innovative because these computer simulation platforms will be used to explore the dependence of the MPI signal on MNP properties and MPI magnetic field conditions, yielding design rules to guide development of future generations of MPI tracers and MPI applications.
 描述(由申请人提供):磁性粒子成像(MPI)是一种新的断层成像技术,可真实的实时绘制氧化铁磁性纳米粒子(MNP)的空间分布,其空间分辨率与其他生物医学成像技术相当或更好。由于氧化铁MNP无毒,MPI是慢性肾病(CKD)患者的安全成像替代方案,并且由于其敏感性,它适用于 血管造影术、细胞追踪、癌症成像、炎症成像、主要器官成像和冠状动脉成像。最近,注意力已经转向具有理想MPI信号特性的MNP的开发。不幸的是,这些努力受到阻碍的理论,预测MPI信号由于MNP示踪剂,考虑到有限弛豫动力学的MNP在随时间变化的磁场典型的MPI。正因为如此,大多数关于开发MNP MPI示踪剂的先前工作仅限于合成颗粒的试错表征,而没有指导其合理设计的理论。所需要的是一个坚实的理论基础,这将允许合理设计未来几代的MNP MPI示踪剂和MPI磁场条件的调整,以产生最佳的图像对比度和分辨率。拟议的研究将发展一个理论基础,涉及MNP属性(例如,核尺寸、流体动力学直径、畴磁化、磁各向异性、粒子-粒子相互作用等)和MPI磁场条件(偏置和激励场强度、磁场梯度强度、扫描速率等)MPI信号强度和分辨率。所提出的方法是独特的,有别于其他工作,因为我们将开发随机计算机模拟模型的MNP的MPI典型的磁场的响应,考虑到纳米粒子的平移,物理旋转,内部偶极子旋转,和粒子-粒子磁相互作用。这些模型将使系统的大参数空间的粒子特性和磁场条件的MPI的典型研究。所提出的工作是有意义的,因为它将提供一个急需的理论理解之间的关系,船舶的粒子属性,MPI磁场条件,和MPI信号强度和分辨率。所提出的工作也是重要的,因为它将产生规则的MNP MPI示踪剂的合理设计与最佳的信号强度和分辨率,也可以建议新的应用程序的MPI超越成像的MNP示踪剂的位置和运动。所提出的工作是创新的,因为它将产生这个理论基础,通过计算机模拟平台的发展,通过结合布朗动力学模拟粒子的平移和旋转和Landau-Lifshitz-吉尔伯特方程描述内部磁偶极旋转,目前尚未探索的方法,在MPI中产生的磁场建模的MNP的响应。拟议的工作也是创新的,因为这些计算机模拟平台将被用来探索MPI信号对MNP属性和MPI磁场条件的依赖性,产生设计规则,以指导未来几代MPI示踪剂和MPI应用程序的开发。

项目成果

期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(1)
Thermal Decomposition Synthesis of Iron Oxide Nanoparticles with Diminished Magnetic Dead Layer by Controlled Addition of Oxygen.
  • DOI:
    10.1021/acsnano.7b00609
  • 发表时间:
    2017-02-28
  • 期刊:
  • 影响因子:
    17.1
  • 作者:
    Unni M;Uhl AM;Savliwala S;Savitzky BH;Dhavalikar R;Garraud N;Arnold DP;Kourkoutis LF;Andrew JS;Rinaldi C
  • 通讯作者:
    Rinaldi C
Design and validation of magnetic particle spectrometer for characterization of magnetic nanoparticle relaxation dynamics.
  • DOI:
    10.1063/1.4978003
  • 发表时间:
    2017-05
  • 期刊:
  • 影响因子:
    1.6
  • 作者:
    Garraud N;Dhavalikar R;Maldonado-Camargo L;Arnold DP;Rinaldi C
  • 通讯作者:
    Rinaldi C
Theoretical Predictions for Spatially-Focused Heating of Magnetic Nanoparticles Guided by Magnetic Particle Imaging Field Gradients.
Magnetic Particle Imaging-Guided Heating in Vivo Using Gradient Fields for Arbitrary Localization of Magnetic Hyperthermia Therapy.
  • DOI:
    10.1021/acsnano.8b00893
  • 发表时间:
    2018-04-24
  • 期刊:
  • 影响因子:
    17.1
  • 作者:
    Tay ZW;Chandrasekharan P;Chiu-Lam A;Hensley DW;Dhavalikar R;Zhou XY;Yu EY;Goodwill PW;Zheng B;Rinaldi C;Conolly SM
  • 通讯作者:
    Conolly SM
Benchtop magnetic particle relaxometer for detection, characterization and analysis of magnetic nanoparticles.
  • DOI:
    10.1088/1361-6560/aad97d
  • 发表时间:
    2018-09-06
  • 期刊:
  • 影响因子:
    3.5
  • 作者:
    Garraud N;Dhavalikar R;Unni M;Savliwala S;Rinaldi C;Arnold DP
  • 通讯作者:
    Arnold DP
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Carlos M Rinaldi-Ramos其他文献

Carlos M Rinaldi-Ramos的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Carlos M Rinaldi-Ramos', 18)}}的其他基金

NIH Administrative Supplement to Promote Diversity in Health Related Research
NIH 促进健康相关研究多样性的行政补充
  • 批准号:
    10876754
  • 财政年份:
    2023
  • 资助金额:
    $ 18万
  • 项目类别:
Nanoparticles for In Vivo Labeling of T Cells During Cancer Immunotherapy
用于癌症免疫治疗期间 T 细胞体内标记的纳米颗粒
  • 批准号:
    10450938
  • 财政年份:
    2022
  • 资助金额:
    $ 18万
  • 项目类别:
Nanoparticles to Track T Cell Immunotherapy Using Magnetic Particle Imaging
使用磁粒子成像追踪 T 细胞免疫治疗的纳米粒子
  • 批准号:
    10365339
  • 财政年份:
    2022
  • 资助金额:
    $ 18万
  • 项目类别:
Nanoparticles for In Vivo Labeling of T Cells During Cancer Immunotherapy
用于癌症免疫治疗期间 T 细胞体内标记的纳米颗粒
  • 批准号:
    10634620
  • 财政年份:
    2022
  • 资助金额:
    $ 18万
  • 项目类别:
Nanoparticles to Track T Cell Immunotherapy Using Magnetic Particle Imaging
使用磁粒子成像追踪 T 细胞免疫治疗的纳米粒子
  • 批准号:
    10621153
  • 财政年份:
    2022
  • 资助金额:
    $ 18万
  • 项目类别:
Innovative Non-Invasive Imaging of Traumatic Brain Injury
创伤性脑损伤的创新非侵入性成像
  • 批准号:
    10527640
  • 财政年份:
    2022
  • 资助金额:
    $ 18万
  • 项目类别:
Magnetically Templated Regeneration Scaffolds for Nerve Injury Repair
用于神经损伤修复的磁模板再生支架
  • 批准号:
    8954155
  • 财政年份:
    2015
  • 资助金额:
    $ 18万
  • 项目类别:
Magnetically Templated Regeneration Scaffolds for Nerve Injury Repair
用于神经损伤修复的磁模板再生支架
  • 批准号:
    9086452
  • 财政年份:
    2015
  • 资助金额:
    $ 18万
  • 项目类别:

相似海外基金

DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
  • 批准号:
    EP/Y029089/1
  • 财政年份:
    2024
  • 资助金额:
    $ 18万
  • 项目类别:
    Research Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
  • 批准号:
    2337776
  • 财政年份:
    2024
  • 资助金额:
    $ 18万
  • 项目类别:
    Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
  • 批准号:
    2338816
  • 财政年份:
    2024
  • 资助金额:
    $ 18万
  • 项目类别:
    Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
  • 批准号:
    2338846
  • 财政年份:
    2024
  • 资助金额:
    $ 18万
  • 项目类别:
    Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
  • 批准号:
    2348261
  • 财政年份:
    2024
  • 资助金额:
    $ 18万
  • 项目类别:
    Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
  • 批准号:
    2348346
  • 财政年份:
    2024
  • 资助金额:
    $ 18万
  • 项目类别:
    Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
  • 批准号:
    2348457
  • 财政年份:
    2024
  • 资助金额:
    $ 18万
  • 项目类别:
    Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
  • 批准号:
    2404989
  • 财政年份:
    2024
  • 资助金额:
    $ 18万
  • 项目类别:
    Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
  • 批准号:
    2339310
  • 财政年份:
    2024
  • 资助金额:
    $ 18万
  • 项目类别:
    Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
  • 批准号:
    2339669
  • 财政年份:
    2024
  • 资助金额:
    $ 18万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了