Modeling of the Magnetic Particle Imaging Signal Due to Magnetic Nanoparticles
磁性纳米粒子产生的磁性粒子成像信号的建模
基本信息
- 批准号:9024525
- 负责人:
- 金额:$ 18万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-03-01 至 2018-01-31
- 项目状态:已结题
- 来源:
- 关键词:AccountingAlgorithmsAngiographyAnisotropyArteriesAttentionCaliberCellsCharacteristicsChronic Kidney FailureCoagulation ProcessComputer SimulationContrast MediaCoronaryCoronary arteryDependenceDetectionDevelopmentDisadvantagedEnvironmentEquationFoundationsFutureFuture GenerationsHealthHybridsImageImaging TechniquesInflammationLocationMagnetic Resonance ImagingMagnetic nanoparticlesMagnetismMapsMeasurementMissionModelingMonitorMotionOrganPatientsPerformancePropertyRelaxationResearchResolutionRotationScanningShippingShipsSignal TransductionSolidSpatial DistributionSuspension substanceSuspensionsTimeTissuesTracerTranslationsViscosityWorkbioimagingcancer imagingcontrast imagingcost effectivedesignexperienceimage processingimprovedinnovationinterestiron oxidemagnetic dipolemagnetic fieldnanoparticlenoveloperationparticleresponsesimulationtheories
项目摘要
DESCRIPTION (provided by applicant): Magnetic Particle Imaging (MPI) is a new tomographic imaging technique that maps the spatial distribution of iron oxide magnetic nanoparticles (MNPs) in real time and with spatial resolution that is on par or better than other biomedical imaging techniques. Because iron oxide MNPs are nontoxic, MPI is a safe imaging alternative for Chronic Kidney Disease (CKD) patients and due to its sensitivity it is suitable for
angiography, cell tracking, cancer imaging, inflammation imaging, imaging major organs, and imaging of coronary arteries. Recently attention has shifted towards development of MNPs with ideal MPI signal characteristics. Unfortunately, these efforts are hampered by a lack of theories that predict the MPI signal due to MNP tracers, taking into account the finite relaxation dynamics of MNPs in time-varying magnetic fields typical of MPI. Because of this, most prior work on development of MNP MPI tracers has been limited to trial-and-error characterization of synthesized particles, without a theory guiding their rational design. What is needed is a solid theoretical foundation that will allow rational design of future generations of MNP MPI tracers and tuning of MPI magnetic field conditions to yield optimal image contrast and resolution. The proposed research will develop a theoretical foundation relating MNP properties (e.g., core size, hydrodynamic diameter, domain magnetization, magnetic anisotropy, particle-particle interactions, etc.) and MPI magnetic field conditions (strength of bias and excitation field, magnetic field gradient strength, scan rate, etc.) to the MPI signal strength and resolution. The proposed approach is unique and distinct from other work because we will develop stochastic computer simulation models of the response of MNPs to the magnetic fields typical of MPI, taking into account nanoparticle translation, physical rotation, internal dipole rotation, and particle-particle magnetic interactions. These models will enable systematic study of the large parameter space of particle properties and magnetic field conditions typical of MPI. The proposed work is significant because it will provide a much-needed theoretical understanding of the relation- ship between particle properties, MPI magnetic field conditions, and MPI signal strength and resolution. The proposed work is also significant because it will yield rules for the rational design of MNP MPI tracers with optimal signal strength and resolution and could also suggest novel applications of MPI beyond imaging of MNP tracer location and motion. The proposed work is innovative because it will yield this theoretical foundation through development of computer simulation platforms to model the response of MNPs to the magnetic fields generated in MPI through a combination of Brownian dynamics simulations of particle translation and rotation and the Landau-Lifshitz-Gilbert equation describing internal magnetic dipole rotation, an approach that is currently unexplored. The proposed work is also innovative because these computer simulation platforms will be used to explore the dependence of the MPI signal on MNP properties and MPI magnetic field conditions, yielding design rules to guide development of future generations of MPI tracers and MPI applications.
项目成果
期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(1)
Thermal Decomposition Synthesis of Iron Oxide Nanoparticles with Diminished Magnetic Dead Layer by Controlled Addition of Oxygen.
- DOI:10.1021/acsnano.7b00609
- 发表时间:2017-02-28
- 期刊:
- 影响因子:17.1
- 作者:Unni M;Uhl AM;Savliwala S;Savitzky BH;Dhavalikar R;Garraud N;Arnold DP;Kourkoutis LF;Andrew JS;Rinaldi C
- 通讯作者:Rinaldi C
Design and validation of magnetic particle spectrometer for characterization of magnetic nanoparticle relaxation dynamics.
- DOI:10.1063/1.4978003
- 发表时间:2017-05
- 期刊:
- 影响因子:1.6
- 作者:Garraud N;Dhavalikar R;Maldonado-Camargo L;Arnold DP;Rinaldi C
- 通讯作者:Rinaldi C
Theoretical Predictions for Spatially-Focused Heating of Magnetic Nanoparticles Guided by Magnetic Particle Imaging Field Gradients.
- DOI:10.1016/j.jmmm.2016.06.038
- 发表时间:2016-12-01
- 期刊:
- 影响因子:2.7
- 作者:Dhavalikar R;Rinaldi C
- 通讯作者:Rinaldi C
Magnetic Particle Imaging-Guided Heating in Vivo Using Gradient Fields for Arbitrary Localization of Magnetic Hyperthermia Therapy.
- DOI:10.1021/acsnano.8b00893
- 发表时间:2018-04-24
- 期刊:
- 影响因子:17.1
- 作者:Tay ZW;Chandrasekharan P;Chiu-Lam A;Hensley DW;Dhavalikar R;Zhou XY;Yu EY;Goodwill PW;Zheng B;Rinaldi C;Conolly SM
- 通讯作者:Conolly SM
Benchtop magnetic particle relaxometer for detection, characterization and analysis of magnetic nanoparticles.
- DOI:10.1088/1361-6560/aad97d
- 发表时间:2018-09-06
- 期刊:
- 影响因子:3.5
- 作者:Garraud N;Dhavalikar R;Unni M;Savliwala S;Rinaldi C;Arnold DP
- 通讯作者:Arnold DP
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Carlos M Rinaldi-Ramos其他文献
Carlos M Rinaldi-Ramos的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Carlos M Rinaldi-Ramos', 18)}}的其他基金
NIH Administrative Supplement to Promote Diversity in Health Related Research
NIH 促进健康相关研究多样性的行政补充
- 批准号:
10876754 - 财政年份:2023
- 资助金额:
$ 18万 - 项目类别:
Nanoparticles for In Vivo Labeling of T Cells During Cancer Immunotherapy
用于癌症免疫治疗期间 T 细胞体内标记的纳米颗粒
- 批准号:
10450938 - 财政年份:2022
- 资助金额:
$ 18万 - 项目类别:
Nanoparticles to Track T Cell Immunotherapy Using Magnetic Particle Imaging
使用磁粒子成像追踪 T 细胞免疫治疗的纳米粒子
- 批准号:
10365339 - 财政年份:2022
- 资助金额:
$ 18万 - 项目类别:
Nanoparticles for In Vivo Labeling of T Cells During Cancer Immunotherapy
用于癌症免疫治疗期间 T 细胞体内标记的纳米颗粒
- 批准号:
10634620 - 财政年份:2022
- 资助金额:
$ 18万 - 项目类别:
Nanoparticles to Track T Cell Immunotherapy Using Magnetic Particle Imaging
使用磁粒子成像追踪 T 细胞免疫治疗的纳米粒子
- 批准号:
10621153 - 财政年份:2022
- 资助金额:
$ 18万 - 项目类别:
Innovative Non-Invasive Imaging of Traumatic Brain Injury
创伤性脑损伤的创新非侵入性成像
- 批准号:
10527640 - 财政年份:2022
- 资助金额:
$ 18万 - 项目类别:
Magnetically Templated Regeneration Scaffolds for Nerve Injury Repair
用于神经损伤修复的磁模板再生支架
- 批准号:
8954155 - 财政年份:2015
- 资助金额:
$ 18万 - 项目类别:
Magnetically Templated Regeneration Scaffolds for Nerve Injury Repair
用于神经损伤修复的磁模板再生支架
- 批准号:
9086452 - 财政年份:2015
- 资助金额:
$ 18万 - 项目类别:
相似海外基金
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
$ 18万 - 项目类别:
Research Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
$ 18万 - 项目类别:
Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
- 批准号:
2338816 - 财政年份:2024
- 资助金额:
$ 18万 - 项目类别:
Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
$ 18万 - 项目类别:
Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
- 批准号:
2348261 - 财政年份:2024
- 资助金额:
$ 18万 - 项目类别:
Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
- 批准号:
2348346 - 财政年份:2024
- 资助金额:
$ 18万 - 项目类别:
Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
- 批准号:
2348457 - 财政年份:2024
- 资助金额:
$ 18万 - 项目类别:
Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
$ 18万 - 项目类别:
Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 18万 - 项目类别:
Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
- 批准号:
2339669 - 财政年份:2024
- 资助金额:
$ 18万 - 项目类别:
Continuing Grant














{{item.name}}会员




