Comprehensive, Cross Platform-Validated 13C Flux Measures of Intra-and Inter-tissue Metabolism
全面、跨平台验证的组织内和组织间代谢的 13C 通量测量
基本信息
- 批准号:9196135
- 负责人:
- 金额:$ 52.04万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-07-01 至 2020-06-30
- 项目状态:已结题
- 来源:
- 关键词:AcetatesAdipose tissueAgingAgreementAlanineAmino AcidsAnimal ModelAppearanceAspartateBypassCarbonCell modelCellular Metabolic ProcessCitric Acid CycleContinuous InfusionDataData AnalysesDiabetes MellitusDiseaseEtiologyEvolutionFatty acid glycerol estersFreezingGlucoseGlutamatesGlutamineGlycerolGoalsHepaticHigh Fat DietHumanIn SituInsulin ResistanceIonsIsotope LabelingKineticsLabelLettersLiverMass Spectrum AnalysisMeasurementMeasuresMetabolicMetabolic DiseasesMetabolic PathwayMetabolismMethodsMitochondriaMuscleNon-Insulin-Dependent Diabetes MellitusOrganPathogenesisPathologicPathway interactionsPatternPlasmaPlayPositioning AttributePropionatesPublished CommentPublishingPyruvateRattusResolutionRodentRoleShunt DeviceSideStable Isotope LabelingTechnical ExpertiseTestingTimeTissuesTracerabstractingawakebasal insulinbasefeedingglucose metabolismglucose productionhepatic gluconeogenesisimprovedin vivoinnovationinsulin sensitivityliver metabolismmitochondrial dysfunctionmitochondrial metabolismnonalcoholic steatohepatitisnovelsymposium
项目摘要
Abstract
Mitochondrial dysfunction has been proposed as a major factor in insulin resistance, aging, and metabolic
diseases. 13C NMR in vivo has been the main method to assess mitochondrial fluxes like the TCA cycle and
anaplerosis. NMR measures 13C flow from labeled substrates like [3-13C]lactate into the amino acids aspartate
and glutamate, with the rationale that via 13C exchange with the TCA intermediate -ketoglutarate, glutamate is
a “trap” for 13C mixing with TCA cycle intermediates. Because NMR in vivo requires major technical expertise,
methods exist to measure plasma glucose labeling from precursors that enter hepatic metabolism and, from
steady-state C labeling, estimate VTCA, particularly using C-propionate. Although in principle these methods
13 13
should agree with tissue measurements, large discrepancies have been observed in several rates, including
VTCA. The divergence is the subject of several recent commentaries, letters, and symposia but lacks a clear
resolution. Resolving the controversy is key to understand the role of mitochondria in the pathogenesis and
treatment of hepatic insulin resistance, nonalcoholic steatohepatitis, and type 2 diabetes.
A solution to the controversy is to measure 13C positional labeling of TCA cycle intermediates. NMR in
vivo and steady-state plasma glucose methods yield indirect measures of mitochondrial metabolism and
depend on some incompletely tested assumptions about relationships with cytosolic glutamate and aspartate.
We recently published the Mass Isotopomeric Multi Ordinate Spectral Analysis (MIMOSA) platform for
comprehensive, stepwise, integrated analysis of intracellular metabolism (see Alves et al., Cell Metabolism,
2015). The “mass isotopomer” aspect of MIMOSA uses MS/MS-based ion fragmentation analysis of stable-
isotope-labeled metabolites to identify carbon-specific label positions. The “multi-ordinate” aspect is a major
innovation that allows direct assessment of label flow along intersecting pathways, including mitochondrial
intermediates that are inaccessible by positional NMR due to sensitivity limitations. We used MIMOSA in a cell
model and found that previous measures of anaplerosis by steady-state glutamate labeling were up to 3x too
high due to mitochondrial dilution pathways that could not otherwise be measured.
We propose to apply MIMOSA in an animal model in vivo to establish the ground truth for hepatic VTCA and
other key fluxes (Aim 1). We will use the information to test the accuracy of present methods used in vivo for
human and rodent studies (Aim2) and develop improved measurement methods. Aim 3 will assess plasma
labeling patterns resulting from tissue-specific metabolism that can impact the interpretation of tissue data. Our
preliminary data identify a lactate-glycerol shunt in adipose that may have pathologic effects in addition to
confounding flux measurements in vivo. Consequently, targeting this pathway may be a novel treatment for
diabetes or other metabolic diseases. A major translational goal is to develop a cross-validated in vivo
analytic platform using either MS or NMR either humans or rodents.
摘要
线粒体功能障碍已被认为是胰岛素抵抗、衰老和代谢的主要因素。
疾病体内13 C NMR是评估线粒体通量如TCA循环的主要方法,
回补NMR测量从标记底物如[3- 13 C]乳酸盐到氨基酸天冬氨酸的13 C流
和谷氨酸,其原理是通过与TCA中间体β-酮戊二酸的13 C交换,谷氨酸被
用于13 C与TCA循环中间体混合的“阱”。由于体内核磁共振需要主要的技术专长,
存在从进入肝代谢的前体和从
稳态C标记,估计VTCA,特别是使用C-丙酸。虽然原则上这些方法
13 13
应该与组织测量一致,但在几个比率中观察到了很大的差异,包括
VTCA。这种分歧是最近几篇评论、信件和研讨会的主题,但缺乏一个明确的
分辨率解决这一争议是理解线粒体在发病机制中的作用的关键,
治疗肝脏胰岛素抵抗、非酒精性脂肪性肝炎和2型糖尿病。
解决争议的方法是测量TCA循环中间体的13 C位置标记。NMR在
体内和稳态血浆葡萄糖方法产生线粒体代谢的间接测量,
依赖于一些关于细胞溶质谷氨酸和天冬氨酸的关系的不完全测试的假设。
我们最近发布了质量同位素多纵标光谱分析(MIMOSA)平台,用于
细胞内代谢的全面、逐步、综合分析(参见Alves等人,细胞代谢,
2015年)的报告。MIMOSA的“质量同位素异构体”方面使用基于MS/MS的稳定同位素的离子碎裂分析。
同位素标记的代谢物以鉴定碳特异性标记位置。“多纵”方面是一大
创新,允许直接评估标记流沿着交叉途径,包括线粒体
由于灵敏度限制,位置NMR无法获得中间体。我们在一个细胞中使用了MIMOSA
模型,并发现先前通过稳态谷氨酸标记的回补措施也高达3倍
高是由于线粒体稀释途径,否则无法测量。
我们建议在体内动物模型中应用MIMOSA,以建立肝脏VTCA的基础事实,
其他关键通量(目标1)。我们将使用这些信息来测试目前在体内使用的方法的准确性,
人类和啮齿动物研究(目标2),并开发改进的测量方法。目标3将评估血浆
由组织特异性代谢产生的标记模式可能影响组织数据的解释。我们
初步数据确定脂肪中的乳酸-甘油分流可能具有病理作用,
干扰体内通量测量。因此,靶向这一途径可能是一种新的治疗方法,
糖尿病或其他代谢疾病。一个主要的转化目标是开发一个交叉验证的体内
使用MS或NMR分析平台,用于人类或啮齿动物。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Richard G Kibbey其他文献
Richard G Kibbey的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Richard G Kibbey', 18)}}的其他基金
Posttranslational Neoantigens in Autoimmunity and Metabolism in T1D
翻译后新抗原在 T1D 自身免疫和代谢中的作用
- 批准号:
10588351 - 财政年份:2023
- 资助金额:
$ 52.04万 - 项目类别:
Development of an Integrated Intermediary Metabolomics and Metabolic Flux Core
集成中间代谢组学和代谢通量核心的开发
- 批准号:
10419697 - 财政年份:2022
- 资助金额:
$ 52.04万 - 项目类别:
Mitochondrial ADP privation: A unifying model for glucose-induced insulin secretion.
线粒体 ADP 缺乏:葡萄糖诱导的胰岛素分泌的统一模型。
- 批准号:
10597083 - 财政年份:2021
- 资助金额:
$ 52.04万 - 项目类别:
Mitochondrial ADP privation: A unifying model for glucose-induced insulin secretion.
线粒体 ADP 缺乏:葡萄糖诱导的胰岛素分泌的统一模型。
- 批准号:
10366083 - 财政年份:2021
- 资助金额:
$ 52.04万 - 项目类别:
Chastening the double-edged sword of glucose metabolism in beta-cells
磨练β细胞中葡萄糖代谢的双刃剑
- 批准号:
9296135 - 财政年份:2016
- 资助金额:
$ 52.04万 - 项目类别:
Chastening the double-edged sword of glucose metabolism in beta-cells
磨练β细胞中葡萄糖代谢的双刃剑
- 批准号:
9157088 - 财政年份:2016
- 资助金额:
$ 52.04万 - 项目类别:
The role of the mitochondrial GTP cycle in insulin secretion
线粒体 GTP 循环在胰岛素分泌中的作用
- 批准号:
8519118 - 财政年份:2011
- 资助金额:
$ 52.04万 - 项目类别:
The role of the mitochondrial GTP cycle in insulin secretion
线粒体 GTP 循环在胰岛素分泌中的作用
- 批准号:
8323878 - 财政年份:2011
- 资助金额:
$ 52.04万 - 项目类别:
The role of the mitochondrial GTP cycle in insulin secretion
线粒体 GTP 循环在胰岛素分泌中的作用
- 批准号:
8913149 - 财政年份:2011
- 资助金额:
$ 52.04万 - 项目类别:
The role of the mitochondrial GTP cycle in insulin secretion
线粒体 GTP 循环在胰岛素分泌中的作用
- 批准号:
8161978 - 财政年份:2011
- 资助金额:
$ 52.04万 - 项目类别:
相似海外基金
Role of Histone Deacetylase 9 (HDAC9) in adipose tissue aging: mitochondrial function, oxidative stress and senescence
组蛋白脱乙酰酶 9 (HDAC9) 在脂肪组织衰老中的作用:线粒体功能、氧化应激和衰老
- 批准号:
10707000 - 财政年份:2022
- 资助金额:
$ 52.04万 - 项目类别:
Effects of aging and exercise training on intermuscular adipose tissue (IMAT) in MoTrPAC
衰老和运动训练对 MoTrPAC 肌间脂肪组织 (IMAT) 的影响
- 批准号:
10467912 - 财政年份:2022
- 资助金额:
$ 52.04万 - 项目类别:
Marrow Adipose Tissue as a Novel Regulator of Systemic Metabolism and Inflammation During Aging.
骨髓脂肪组织作为衰老过程中全身代谢和炎症的新型调节器。
- 批准号:
10349939 - 财政年份:2022
- 资助金额:
$ 52.04万 - 项目类别:
Effects of aging and exercise training on intermuscular adipose tissue (IMAT) in MoTrPAC
衰老和运动训练对 MoTrPAC 肌间脂肪组织 (IMAT) 的影响
- 批准号:
10703366 - 财政年份:2022
- 资助金额:
$ 52.04万 - 项目类别:
Marrow Adipose Tissue as a Novel Regulator of Systemic Metabolism and Inflammation During Aging.
骨髓脂肪组织作为衰老过程中全身代谢和炎症的新型调节器。
- 批准号:
10689661 - 财政年份:2022
- 资助金额:
$ 52.04万 - 项目类别:
Syndecan-4 as a molecular link between adipose tissue and aging
Syndecan-4 作为脂肪组织与衰老之间的分子联系
- 批准号:
10232057 - 财政年份:2020
- 资助金额:
$ 52.04万 - 项目类别:
Syndecan-4 as a molecular link between adipose tissue and aging
Syndecan-4 作为脂肪组织与衰老之间的分子联系
- 批准号:
9894151 - 财政年份:2020
- 资助金额:
$ 52.04万 - 项目类别:
Pathophysiological functions of a multifunctional molecule, myoferlin, in adipose tissue and its involvement in individual aging
多功能分子肌铁蛋白在脂肪组织中的病理生理功能及其与个体衰老的关系
- 批准号:
20K22873 - 财政年份:2020
- 资助金额:
$ 52.04万 - 项目类别:
Grant-in-Aid for Research Activity Start-up
Investigating the role of adipose tissue in mobility and aging (SOMMA-AT)
研究脂肪组织在活动能力和衰老中的作用 (SOMMA-AT)
- 批准号:
10083347 - 财政年份:2020
- 资助金额:
$ 52.04万 - 项目类别:














{{item.name}}会员




