Mitochondrial ADP privation: A unifying model for glucose-induced insulin secretion.
线粒体 ADP 缺乏:葡萄糖诱导的胰岛素分泌的统一模型。
基本信息
- 批准号:10366083
- 负责人:
- 金额:$ 68.47万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-04-01 至 2026-03-31
- 项目状态:未结题
- 来源:
- 关键词:Acetyl Coenzyme AAgonistAnimal ModelBeta CellBiochemicalBiophysicsCarbonCell LineCell membraneCell physiologyCellsCellular Metabolic ProcessCharacteristicsCitric Acid CycleConflict (Psychology)CouplingDietDisputesElectrophysiology (science)ExocytosisFailureFructoseG-Protein-Coupled ReceptorsGenerationsGeneticGlucokinaseGlucoseHealthHumanHydrolysisImaging TechniquesInsulinIslet CellLinkMediatingMembraneMetabolicMetabolismMitochondriaModelingMusOxidative PhosphorylationPharmacologyPharmacotherapyPhasePhosphoenolpyruvatePhysiologicalPrivatizationProton-Motive ForcePyruvate CarboxylasePyruvate KinaseReactionRegulationReporterRodentSignal TransductionStructure of beta Cell of isletTestingTheftTherapeuticTimeTranslational Researchbaseblood glucose regulationclinical efficacydetection of nutrientdiabetogenicimprovedin vivoinsulin secretionisletmetabolomicsmitochondrial metabolismoxidationphenomicspre-clinicalpyruvate dehydrogenasestable isotopetoolvoltage
项目摘要
The most widely-accepted description of the β-cells glucose sensing mechanism involves the mitochondrial oxidation of glucose carbons to raise the ATP/ADP ratio, close KATP channels, and activate Ca2+ influx, which triggers insulin exocytosis. While there is no dispute that oxidative phosphorylation (OxPhos) contributes to function and increased ATP biosynthetic capacity in β-cells, several lines of genetic, biophysical and experimental evidence challenge one key component of the canonical mechanism – the exclusivity of coupling OxPhos to KATP channel closure. Importantly, the expansion mitochondrial metabolites (anaplerosis) through pyruvate carboxylase (PC) is more strongly correlated with insulin secretion than oxidative flux through pyruvate
dehydrogenase (PDH). Glucose carbons that transit PC generate 40% of the cytosolic phosphoenolpyruvate (PEP) through the cataplerotic mitochondrial PEP carboxykinase (PCK2) reaction. This ‘PEP cycle’ provides a mechanism distinct from OxPhos for cytosolic ATP/ADP generation via pyruvate kinase (PK). Here, we propose a unified model that reconciles canonical OxPhos with anaplerosis by invoking an oscillatory, two-state model where PK itself initiates KATP channel closure. In the first phase, termed ‘MitoSynth,’ cytosolic ADP lowering by PK deprives mitochondria of ADP (termed ‘ADP privation’) that 1) turns off OxPhos to accelerate the PEP cycle, 2) PEP then leaves the mitochondria where 3) its hydrolysis by PK locally triggers KATP channel closure. Following depolarization, the second phase, termed ‘MitoOx,’ sustains membrane depolarization and insulin secretion via OxPhos. This revised model has profound implications for β-cell function, pharmacotherapy and health. This proposal will determine if PK can outcompete mitochondria for ADP, if such ADP privation turns off OxPhos and induces mitochondrial PEP synthesis, and if targeting MitoSynth can improve islet function and health in vivo. AIM 1: To assess how PK-mediated ADP privation induces the high-voltage, low-current MitoSynth state. This aim asks the question, can PK steal ADP from mitochondria as part of the signal to stimulate insulin
secretion? Such ADP privation induces KATP triggering and mitochondrial hyperpolarization at the end of the electrically-silent phase. AIM 2: To determine the regulation of anaplerotic and cataplerotic metabolism by mitochondrial ADP privation during MitoSynth. The hypothesis is that mitochondrial ADP privation activates PEP cycling through the generation of allosteric intermediates. This aim assesses the mechanistic, functional and biochemical characterization of the MitoSynth state. Aim 3: To determine the physiological and pharmacological significance MitoSynth and MitoOx phases of β-cell glucose sensing in vivo. In the two-state model, there are at least two targetable mechanisms to augment insulin secretion: lengthening MitoOx, or shortening the time for MitoSynth to trigger depolarization. We will determine if MitoOx lengthening injures islets while MitoSynth shortening promotes human islet health.
对 β 细胞葡萄糖传感机制最广泛接受的描述涉及葡萄糖碳的线粒体氧化,以提高 ATP/ADP 比率、关闭 KATP 通道并激活 Ca2+ 内流,从而触发胰岛素胞吐作用。虽然毫无争议,氧化磷酸化 (OxPhos) 有助于 β 细胞的功能并增加 ATP 生物合成能力,但一些遗传、生物物理和实验证据对经典机制的一个关键组成部分提出了挑战,即 OxPhos 与 KATP 通道关闭耦合的排他性。重要的是,通过丙酮酸羧化酶 (PC) 扩展线粒体代谢物(回补)与胰岛素分泌的相关性比通过丙酮酸的氧化通量的相关性更强
脱氢酶(PDH)。转运 PC 的葡萄糖碳通过线粒体 PEP 羧激酶 (PCK2) 反应产生 40% 的胞质磷酸烯醇丙酮酸 (PEP)。这种“PEP 循环”提供了一种与 OxPhos 不同的机制,用于通过丙酮酸激酶 (PK) 生成胞质 ATP/ADP。在这里,我们提出了一个统一的模型,通过调用一个振荡的两态模型(其中 PK 本身启动 KATP 通道关闭)来协调规范的 OxPhos 与回补。在第一阶段,称为“MitoSynth”,通过 PK 降低胞质 ADP,剥夺线粒体中的 ADP(称为“ADP 剥夺”),1) 关闭 OxPhos 以加速 PEP 循环,2) PEP 然后离开线粒体,3) PK 对其进行水解,局部触发 KATP 通道关闭。去极化后,第二阶段称为“MitoOx”,通过 OxPhos 维持膜去极化和胰岛素分泌。这一修订后的模型对 β 细胞功能、药物治疗和健康具有深远的影响。该提案将确定 PK 是否可以在 ADP 方面战胜线粒体,这种 ADP 缺乏是否会关闭 OxPhos 并诱导线粒体 PEP 合成,以及靶向 MitoSynth 是否可以改善体内胰岛功能和健康。目标 1:评估 PK 介导的 ADP 缺乏如何诱导高电压、低电流 MitoSynth 状态。这个目标提出了一个问题,PK 能否从线粒体窃取 ADP 作为刺激胰岛素信号的一部分
分泌?这种 ADP 缺乏会在电静默阶段结束时诱导 KATP 触发和线粒体超极化。目标 2:确定 MitoSynth 期间线粒体 ADP 缺乏对回补和回补代谢的调节。假设线粒体 ADP 缺乏通过产生变构中间体来激活 PEP 循环。该目标评估 MitoSynth 状态的机械、功能和生化特征。目标 3:确定体内 β 细胞葡萄糖传感的 MitoSynth 和 MitoOx 相的生理和药理学意义。在两种状态模型中,至少有两种增强胰岛素分泌的可靶向机制:延长 MitoOx 或缩短 MitoSynth 触发去极化的时间。我们将确定 MitoOx 延长是否会损害胰岛,而 MitoSynth 缩短是否会促进人类胰岛健康。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Richard G Kibbey其他文献
Richard G Kibbey的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Richard G Kibbey', 18)}}的其他基金
Posttranslational Neoantigens in Autoimmunity and Metabolism in T1D
翻译后新抗原在 T1D 自身免疫和代谢中的作用
- 批准号:
10588351 - 财政年份:2023
- 资助金额:
$ 68.47万 - 项目类别:
Development of an Integrated Intermediary Metabolomics and Metabolic Flux Core
集成中间代谢组学和代谢通量核心的开发
- 批准号:
10419697 - 财政年份:2022
- 资助金额:
$ 68.47万 - 项目类别:
Mitochondrial ADP privation: A unifying model for glucose-induced insulin secretion.
线粒体 ADP 缺乏:葡萄糖诱导的胰岛素分泌的统一模型。
- 批准号:
10597083 - 财政年份:2021
- 资助金额:
$ 68.47万 - 项目类别:
Chastening the double-edged sword of glucose metabolism in beta-cells
磨练β细胞中葡萄糖代谢的双刃剑
- 批准号:
9296135 - 财政年份:2016
- 资助金额:
$ 68.47万 - 项目类别:
Chastening the double-edged sword of glucose metabolism in beta-cells
磨练β细胞中葡萄糖代谢的双刃剑
- 批准号:
9157088 - 财政年份:2016
- 资助金额:
$ 68.47万 - 项目类别:
Comprehensive, Cross Platform-Validated 13C Flux Measures of Intra-and Inter-tissue Metabolism
全面、跨平台验证的组织内和组织间代谢的 13C 通量测量
- 批准号:
9196135 - 财政年份:2016
- 资助金额:
$ 68.47万 - 项目类别:
The role of the mitochondrial GTP cycle in insulin secretion
线粒体 GTP 循环在胰岛素分泌中的作用
- 批准号:
8519118 - 财政年份:2011
- 资助金额:
$ 68.47万 - 项目类别:
The role of the mitochondrial GTP cycle in insulin secretion
线粒体 GTP 循环在胰岛素分泌中的作用
- 批准号:
8323878 - 财政年份:2011
- 资助金额:
$ 68.47万 - 项目类别:
The role of the mitochondrial GTP cycle in insulin secretion
线粒体 GTP 循环在胰岛素分泌中的作用
- 批准号:
8913149 - 财政年份:2011
- 资助金额:
$ 68.47万 - 项目类别:
The role of the mitochondrial GTP cycle in insulin secretion
线粒体 GTP 循环在胰岛素分泌中的作用
- 批准号:
8161978 - 财政年份:2011
- 资助金额:
$ 68.47万 - 项目类别:
相似国自然基金
Agonist-GPR119-Gs复合物的结构生物学研究
- 批准号:32000851
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
相似海外基金
S1PR1 agonistによる脳血液関門制御を介した脳梗塞の新規治療法開発
S1PR1激动剂调节血脑屏障治疗脑梗塞新方法的开发
- 批准号:
24K12256 - 财政年份:2024
- 资助金额:
$ 68.47万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
AHR agonistによるSLE皮疹の新たな治療薬の開発
使用 AHR 激动剂开发治疗 SLE 皮疹的新疗法
- 批准号:
24K19176 - 财政年份:2024
- 资助金额:
$ 68.47万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Evaluation of a specific LXR/PPAR agonist for treatment of Alzheimer's disease
特定 LXR/PPAR 激动剂治疗阿尔茨海默病的评估
- 批准号:
10578068 - 财政年份:2023
- 资助金额:
$ 68.47万 - 项目类别:
AUGMENTING THE QUALITY AND DURATION OF THE IMMUNE RESPONSE WITH A NOVEL TLR2 AGONIST-ALUMINUM COMBINATION ADJUVANT
使用新型 TLR2 激动剂-铝组合佐剂增强免疫反应的质量和持续时间
- 批准号:
10933287 - 财政年份:2023
- 资助金额:
$ 68.47万 - 项目类别:
Targeting breast cancer microenvironment with small molecule agonist of relaxin receptor
用松弛素受体小分子激动剂靶向乳腺癌微环境
- 批准号:
10650593 - 财政年份:2023
- 资助金额:
$ 68.47万 - 项目类别:
AMPKa agonist in attenuating CPT1A inhibition and alcoholic chronic pancreatitis
AMPKa 激动剂减轻 CPT1A 抑制和酒精性慢性胰腺炎
- 批准号:
10649275 - 财政年份:2023
- 资助金额:
$ 68.47万 - 项目类别:
Investigating mechanisms underpinning outcomes in people on opioid agonist treatment for OUD: Disentangling sleep and circadian rhythm influences on craving and emotion regulation
研究阿片类激动剂治疗 OUD 患者结果的机制:解开睡眠和昼夜节律对渴望和情绪调节的影响
- 批准号:
10784209 - 财政年份:2023
- 资助金额:
$ 68.47万 - 项目类别:
A randomized double-blind placebo controlled Phase 1 SAD study in male and female healthy volunteers to assess safety, pharmacokinetics, and transient biomarker changes by the ABCA1 agonist CS6253
在男性和女性健康志愿者中进行的一项随机双盲安慰剂对照 1 期 SAD 研究,旨在评估 ABCA1 激动剂 CS6253 的安全性、药代动力学和短暂生物标志物变化
- 批准号:
10734158 - 财政年份:2023
- 资助金额:
$ 68.47万 - 项目类别:
A novel nanobody-based agonist-redirected checkpoint (ARC) molecule, aPD1-Fc-OX40L, for cancer immunotherapy
一种基于纳米抗体的新型激动剂重定向检查点 (ARC) 分子 aPD1-Fc-OX40L,用于癌症免疫治疗
- 批准号:
10580259 - 财政年份:2023
- 资助金额:
$ 68.47万 - 项目类别:
Identification and characterization of a plant growth promoter from wild plants: is this a novel plant hormone agonist?
野生植物中植物生长促进剂的鉴定和表征:这是一种新型植物激素激动剂吗?
- 批准号:
23K05057 - 财政年份:2023
- 资助金额:
$ 68.47万 - 项目类别:
Grant-in-Aid for Scientific Research (C)














{{item.name}}会员




