Intrinsically photosensitive retinal ganglion cells and their central projections
本质光敏视网膜神经节细胞及其中央投影
基本信息
- 批准号:9548070
- 负责人:
- 金额:$ 4.67万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-12-01 至 2020-11-30
- 项目状态:已结题
- 来源:
- 关键词:Alpha CellAnatomyAnimal ModelAxonBehavioralBiologicalBiophysical ProcessBrainBrain regionCaliberCardiovascular DiseasesCell NucleusCellsCharacteristicsCircadian RhythmsDendritesDextransDiagnosisDiseaseDistantElectrodesElectrophysiology (science)ExhibitsEyeFoundationsGoalsHealthHormonesHumanIn VitroInjectableInvestigationJet Lag SyndromeKineticsKnowledgeLabelLightLightingLinkLogisticsMacacaMagnetic Resonance ImagingMalignant NeoplasmsMammalsMeasurementMeasuresMediatingMediator of activation proteinMedulla oblongata oliveMental disordersMetabolic DiseasesMethodsMorphologyNeuronsOrganismOutputPathway interactionsPatternPharmacologyPhotonsPhotophobiaPhotoreceptorsPhotosensitivityPhototransductionPhysiologicalPhysiological ProcessesPhysiologyPigmentsPopulationPrimatesPropertyProxyPublishingPupilPupil light reflexRegulationResearchRetinaRetinalRetinal Ganglion CellsRodentRoentgen RaysSignal TransductionStimulusSupport SystemSynapsesSystemTechniquesTestingTherapeutic EffectTimeVariantVertebrate PhotoreceptorsVisionVisual PerceptionVisual system structureWorkabsorptionalertnesscircadian pacemakerexperimental studyhuman diseasein vivoinsightmelanopsinnerve supplyneurophysiologypublic health relevancereceptive fieldreceptorresponsespatiotemporalspecies differencesuprachiasmatic nucleussynergismsystem architecturevisual stimulus
项目摘要
DESCRIPTION (provided by applicant): We sense light for a diverse array of functions that include regulation of the circadian clock, pupil diameter, hormone levels, and alertness. These non-image visual functions are distinguished from visual perception in that they are insensitive to details in the scene, being driven instead by the absolute level of illumination. Our goal is to
understand the basis of these functions in a diurnal species whose visual system has strong homologies with that of humans. We focus on the intrinsically photosensitive retinal ganglion cells (ipRGCs), which respond directly to light using a receptor molecule called melanopsin, while also receiving inputs from rod- and cone-driven pathways. IpRGCs project their axons from the eye to numerous targets in the brain, with their two principal targets being the suprachiasmatic nucleus (SCN), which is the master circadian clock, and the pretectal olivary nucleus (PON), which is a control center for the pupillary light reflex. The clock and pupil exhibi marked, quantitative differences in their light responses. The clock integrates light over many minutes to produce an accurate measurement of overall irradiance, which provides a proxy for time of day; by contrast, the pupil senses light on a time scale of seconds to dynamically regulate the amount of light reaching the retina. Our broad hypothesis is that signaling mechanisms within the ipRGC system are suited to the integrative character of non-image vision in a diurnal mammal, and tuned to specific downstream functions. To test this hypothesis, we will determine the phototransduction mechanisms and spatiotemporal dynamics of ipRGCs that innervate the SCN or PON; furthermore, we will connect these features to the spatiotemporal dynamics of SCN and PON neurons. Our experiments rely on a synergy of in vitro and in vivo neurophysiological techniques. We have established a logistical and technological platform that allows the ipRGC system to be defined in stepwise fashion across multiple levels of biological organization, from photon absorption by melanopsin to the chromatic sensitivities of downstream neurons and behavioral outputs. Our experiments will constitute the first extensive and systematic investigation of the ipRGC system in a diurnal mammal, and will lay the foundation for a precise understanding of links that have been made between dysregulation within this system and human diseases that include cancer, cardiovascular disease, metabolic disorders, psychiatric disorders, and jet lag. The strong commonalities between our model organism and humans make the translational relevance of our research especially direct.
描述(由申请人提供):我们感知光具有多种功能,包括调节生物钟、瞳孔直径、激素水平和警觉性。这些非图像视觉功能与视觉感知的区别在于它们对场景中的细节不敏感,而是由绝对照明水平驱动。我们的目标是
了解昼夜物种的这些功能的基础,该物种的视觉系统与人类的视觉系统具有很强的同源性。我们关注本质上光敏的视网膜神经节细胞(ipRGC),它使用一种称为黑视蛋白的受体分子直接对光做出反应,同时还接收来自视杆细胞和视锥细胞驱动通路的输入。 IpRGC 将轴突从眼睛投射到大脑中的众多目标,其两个主要目标是视交叉上核 (SCN)(主要生物钟)和顶盖前橄榄核 (PON)(瞳孔光反射控制中心)。时钟和瞳孔在光响应方面表现出明显的定量差异。该时钟对许多分钟内的光进行积分,以准确测量整体辐照度,从而提供一天中时间的代理;相比之下,瞳孔以秒为单位感知光线,以动态调节到达视网膜的光线量。我们的广泛假设是 ipRGC 系统内的信号机制适合昼间哺乳动物非图像视觉的整合特征,并调整到特定的下游功能。为了验证这一假设,我们将确定支配 SCN 或 PON 的 ipRGC 的光转导机制和时空动力学;此外,我们会将这些特征与 SCN 和 PON 神经元的时空动态联系起来。我们的实验依赖于体外和体内神经生理学技术的协同作用。我们建立了一个后勤和技术平台,允许在生物组织的多个层面上逐步定义 ipRGC 系统,从黑视蛋白的光子吸收到下游神经元的色敏感性和行为输出。我们的实验将首次对昼间哺乳动物的 ipRGC 系统进行广泛和系统的研究,并将为准确理解该系统内的失调与人类疾病(包括癌症、心血管疾病、代谢紊乱、精神疾病和时差反应)之间的联系奠定基础。我们的模式生物和人类之间的强烈共性使得我们研究的转化相关性特别直接。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Michael Tri Hoang Do其他文献
Michael Tri Hoang Do的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Michael Tri Hoang Do', 18)}}的其他基金
Downstream Actions of Biophysical Mechanisms in the Visual System
视觉系统中生物物理机制的下游作用
- 批准号:
10686231 - 财政年份:2022
- 资助金额:
$ 4.67万 - 项目类别:
Downstream Actions of Biophysical Mechanisms in the Visual System
视觉系统中生物物理机制的下游作用
- 批准号:
10501670 - 财政年份:2022
- 资助金额:
$ 4.67万 - 项目类别:
Origins and Transformations of Signals for Circadian Regulation
昼夜节律调节信号的起源和转变
- 批准号:
10196515 - 财政年份:2021
- 资助金额:
$ 4.67万 - 项目类别:
Origins and Transformations of Signals for Circadian Regulation
昼夜节律调节信号的起源和转变
- 批准号:
10394943 - 财政年份:2021
- 资助金额:
$ 4.67万 - 项目类别:
Origins and Transformations of Signals for Circadian Regulation
昼夜节律调节信号的起源和转变
- 批准号:
10548506 - 财政年份:2021
- 资助金额:
$ 4.67万 - 项目类别:
相似海外基金
Linking Epidermis and Mesophyll Signalling. Anatomy and Impact in Photosynthesis.
连接表皮和叶肉信号传导。
- 批准号:
EP/Z000882/1 - 财政年份:2024
- 资助金额:
$ 4.67万 - 项目类别:
Fellowship
Digging Deeper with AI: Canada-UK-US Partnership for Next-generation Plant Root Anatomy Segmentation
利用人工智能进行更深入的挖掘:加拿大、英国、美国合作开发下一代植物根部解剖分割
- 批准号:
BB/Y513908/1 - 财政年份:2024
- 资助金额:
$ 4.67万 - 项目类别:
Research Grant
Simultaneous development of direct-view and video laryngoscopes based on the anatomy and physiology of the newborn
根据新生儿解剖生理同步开发直视喉镜和视频喉镜
- 批准号:
23K11917 - 财政年份:2023
- 资助金额:
$ 4.67万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Genetics of Extreme Phenotypes of OSA and Associated Upper Airway Anatomy
OSA 极端表型的遗传学及相关上呼吸道解剖学
- 批准号:
10555809 - 财政年份:2023
- 资助金额:
$ 4.67万 - 项目类别:
computational models and analysis of the retinal anatomy and potentially physiology
视网膜解剖学和潜在生理学的计算模型和分析
- 批准号:
2825967 - 财政年份:2023
- 资助金额:
$ 4.67万 - 项目类别:
Studentship
Computational comparative anatomy: Translating between species in neuroscience
计算比较解剖学:神经科学中物种之间的翻译
- 批准号:
BB/X013227/1 - 财政年份:2023
- 资助金额:
$ 4.67万 - 项目类别:
Research Grant
Doctoral Dissertation Research: Social and ecological influences on brain anatomy
博士论文研究:社会和生态对大脑解剖学的影响
- 批准号:
2235348 - 财政年份:2023
- 资助金额:
$ 4.67万 - 项目类别:
Standard Grant
Development of a novel visualization, labeling, communication and tracking engine for human anatomy.
开发一种新颖的人体解剖学可视化、标签、通信和跟踪引擎。
- 批准号:
10761060 - 财政年份:2023
- 资助金额:
$ 4.67万 - 项目类别:
Understanding the functional anatomy of nociceptive spinal output neurons
了解伤害性脊髓输出神经元的功能解剖结构
- 批准号:
10751126 - 财政年份:2023
- 资助金额:
$ 4.67万 - 项目类别:
Anatomy and functions of LTP interactomes and their relationship to small RNA signals in systemic acquired resistance
LTP相互作用组的解剖和功能及其与系统获得性耐药中小RNA信号的关系
- 批准号:
BB/X013049/1 - 财政年份:2023
- 资助金额:
$ 4.67万 - 项目类别:
Research Grant