Neurophysiology of the Fovea

中央凹的神经生理学

基本信息

  • 批准号:
    10002243
  • 负责人:
  • 金额:
    $ 44.25万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-09-01 至 2023-08-31
  • 项目状态:
    已结题

项目摘要

Most conscious vision in humans and other primates begins with the fovea, a specialization of the central retina that encodes the image in exceptional detail. The cone photoreceptors of the fovea are tailored for high spatial acuity. They have a tiny cross-section and dense packing, allowing them to form an extremely fine pixel array. Foveal cones also extend long axons that allow downstream cells to be displaced laterally from the light path, providing direct access to the visual image. Each of the principal output neurons of the fovea—the midget retinal ganglion cells (RGCs)—is also driven by a single cone, preserving spatial resolution. By contrast, cones of the peripheral retina are broad, widely spaced, and positioned behind layers of cell bodies and processes; additionally, more than a dozen peripheral cones converge upon single midget RGCs, further reducing spatial resolution. These anatomical specializations of the fovea have been recognized for decades. The overarching hypothesis of this proposal is that foveal cones also possess functional specializations for high-acuity vision. Indeed, a recent publication has indicated that phototransduction is more prolonged in foveal than peripheral cones. The consequences of this distinction are not yet clear. Much depends on how the light responses of foveal cones are shaped downstream of phototransduction, by voltage-gated ion channels (VGICs). Experiments proposed in Aim 1 test the hypothesis that VGICs complement the distinct kinetics of foveal phototransduction. The ability to encode fine spatial detail also depends on the signal/noise ratio. Achieving high signal/noise would appear especially important for foveal cones, which have little opportunity to pool their signals to improve the response fidelity of foveal midget RGCs. In Aim 2, we test the hypothesis that the signal/noise of foveal cones is increased at multiple stages, including the currents produced by phototransduction and VGICs as well as their effect on the membrane voltage at the soma and synaptic terminal. For both aims, our principal approach is to apply patch-clamp electrophysiology to foveal and peripheral cones that are embedded within retinal circuitry or have been acutely dispersed into single cells. These experiments are complemented by computational modeling. We maintain an experimental platform that supplies us with foveal and peripheral tissue for quantitative analysis. The work proposed here constitutes early steps toward a full understanding of the fovea at the level of cellular neurophysiology.
人类和其他灵长类动物的大多数有意识的视觉都始于中央凹,这是中央凹的一种特化。 视网膜对图像进行特殊细节的编码。视网膜中央凹的视锥光感受器是为高 空间敏锐度它们有一个微小的横截面和密集的包装,使他们能够形成一个极其精细的像素 阵中央凹视锥还延伸长轴突,允许下游细胞因光线而侧向移位 路径,提供对视觉图像的直接访问。中央凹的每个主要输出神经元-侏儒 视网膜神经节细胞(RGC)-也由单个锥体驱动,保持空间分辨率。相比之下, 周边视网膜是广泛的,广泛的间距,并位于细胞体和过程层的后面; 此外,十几个周边锥体聚集在单个侏儒RGC上,进一步减少了空间 分辨率视网膜中央凹的这些解剖学特化已经被认识了几十年。总体 该建议的假设是中央凹视锥也具有用于高敏锐度视觉的功能特化。 事实上,最近的出版物表明,光转导是更长的中央凹比周边 圆锥体。这种区分的后果尚不清楚。这在很大程度上取决于 中央凹视锥通过电压门控离子通道(VGIC)在光转导的下游成形。 目的1中提出的实验检验了VGIC补充了中央凹的不同动力学的假设。 光传导对精细空间细节进行编码的能力还取决于信噪比。实现 高信号/噪声对于中央凹视锥将显得特别重要,中央凹视锥几乎没有机会汇集它们的 信号,以提高反应保真度的中央凹侏儒RGC。在目标2中,我们测试了假设, 中央凹视锥的信号/噪声在多个阶段增加,包括 以及它们对索马和突触膜电压的影响 终端对于这两个目标,我们的主要方法是将膜片钳电生理学应用于中央凹和 周边视锥细胞嵌入视网膜回路内或已急剧分散成单个细胞。 这些实验是由计算机建模的补充。我们有一个实验平台 为我们提供了用于定量分析的中央凹和周边组织。这里提出的工作包括: 在细胞神经生理学的水平上对中央凹的全面理解的早期步骤。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Michael Tri Hoang Do其他文献

Michael Tri Hoang Do的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Michael Tri Hoang Do', 18)}}的其他基金

Downstream Actions of Biophysical Mechanisms in the Visual System
视觉系统中生物物理机制的下游作用
  • 批准号:
    10686231
  • 财政年份:
    2022
  • 资助金额:
    $ 44.25万
  • 项目类别:
Downstream Actions of Biophysical Mechanisms in the Visual System
视觉系统中生物物理机制的下游作用
  • 批准号:
    10501670
  • 财政年份:
    2022
  • 资助金额:
    $ 44.25万
  • 项目类别:
Origins and Transformations of Signals for Circadian Regulation
昼夜节律调节信号的起源和转变
  • 批准号:
    10196515
  • 财政年份:
    2021
  • 资助金额:
    $ 44.25万
  • 项目类别:
Origins and Transformations of Signals for Circadian Regulation
昼夜节律调节信号的起源和转变
  • 批准号:
    10548506
  • 财政年份:
    2021
  • 资助金额:
    $ 44.25万
  • 项目类别:
Origins and Transformations of Signals for Circadian Regulation
昼夜节律调节信号的起源和转变
  • 批准号:
    10394943
  • 财政年份:
    2021
  • 资助金额:
    $ 44.25万
  • 项目类别:
Neurophysiology of the Fovea
中央凹的神经生理学
  • 批准号:
    10469393
  • 财政年份:
    2019
  • 资助金额:
    $ 44.25万
  • 项目类别:
Neurophysiology of the Fovea
中央凹的神经生理学
  • 批准号:
    9811101
  • 财政年份:
    2019
  • 资助金额:
    $ 44.25万
  • 项目类别:
Neurophysiology of the Fovea
中央凹的神经生理学
  • 批准号:
    10238108
  • 财政年份:
    2019
  • 资助金额:
    $ 44.25万
  • 项目类别:
Cellular Mechanisms of High-Acuity Vision
高敏锐度视觉的细胞机制
  • 批准号:
    9112186
  • 财政年份:
    2016
  • 资助金额:
    $ 44.25万
  • 项目类别:
Intrinsically photosensitive retinal ganglion cells and their central projections
本质光敏视网膜神经节细胞及其中央投影
  • 批准号:
    9188555
  • 财政年份:
    2015
  • 资助金额:
    $ 44.25万
  • 项目类别:

相似海外基金

Transcriptional assessment of haematopoietic differentiation to risk-stratify acute lymphoblastic leukaemia
造血分化的转录评估对急性淋巴细胞白血病的风险分层
  • 批准号:
    MR/Y009568/1
  • 财政年份:
    2024
  • 资助金额:
    $ 44.25万
  • 项目类别:
    Fellowship
Combining two unique AI platforms for the discovery of novel genetic therapeutic targets & preclinical validation of synthetic biomolecules to treat Acute myeloid leukaemia (AML).
结合两个独特的人工智能平台来发现新的基因治疗靶点
  • 批准号:
    10090332
  • 财政年份:
    2024
  • 资助金额:
    $ 44.25万
  • 项目类别:
    Collaborative R&D
Acute senescence: a novel host defence counteracting typhoidal Salmonella
急性衰老:对抗伤寒沙门氏菌的新型宿主防御
  • 批准号:
    MR/X02329X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 44.25万
  • 项目类别:
    Fellowship
Cellular Neuroinflammation in Acute Brain Injury
急性脑损伤中的细胞神经炎症
  • 批准号:
    MR/X021882/1
  • 财政年份:
    2024
  • 资助金额:
    $ 44.25万
  • 项目类别:
    Research Grant
STTR Phase I: Non-invasive focused ultrasound treatment to modulate the immune system for acute and chronic kidney rejection
STTR 第一期:非侵入性聚焦超声治疗调节免疫系统以治疗急性和慢性肾排斥
  • 批准号:
    2312694
  • 财政年份:
    2024
  • 资助金额:
    $ 44.25万
  • 项目类别:
    Standard Grant
Combining Mechanistic Modelling with Machine Learning for Diagnosis of Acute Respiratory Distress Syndrome
机械建模与机器学习相结合诊断急性呼吸窘迫综合征
  • 批准号:
    EP/Y003527/1
  • 财政年份:
    2024
  • 资助金额:
    $ 44.25万
  • 项目类别:
    Research Grant
FITEAML: Functional Interrogation of Transposable Elements in Acute Myeloid Leukaemia
FITEAML:急性髓系白血病转座元件的功能研究
  • 批准号:
    EP/Y030338/1
  • 财政年份:
    2024
  • 资助金额:
    $ 44.25万
  • 项目类别:
    Research Grant
KAT2A PROTACs targetting the differentiation of blasts and leukemic stem cells for the treatment of Acute Myeloid Leukaemia
KAT2A PROTAC 靶向原始细胞和白血病干细胞的分化,用于治疗急性髓系白血病
  • 批准号:
    MR/X029557/1
  • 财政年份:
    2024
  • 资助金额:
    $ 44.25万
  • 项目类别:
    Research Grant
ロボット支援肝切除術は真に低侵襲なのか?acute phaseに着目して
机器人辅助肝切除术真的是微创吗?
  • 批准号:
    24K19395
  • 财政年份:
    2024
  • 资助金额:
    $ 44.25万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Acute human gingivitis systems biology
人类急性牙龈炎系统生物学
  • 批准号:
    484000
  • 财政年份:
    2023
  • 资助金额:
    $ 44.25万
  • 项目类别:
    Operating Grants
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了