Improved Disease Stratification Using Electronic Health Records
使用电子健康记录改进疾病分层
基本信息
- 批准号:9453180
- 负责人:
- 金额:$ 18.91万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-09-16 至 2020-08-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAreaBiologicalBiomedical ResearchCategoriesClassificationClinicalClinical DataComplementComputer AnalysisDataData SetData SourcesDetectionDiagnosisDiagnosticDiseaseDisease stratificationEconomic BurdenElectrocardiogramElectronic Health RecordGenotypeGroupingHealthHealthcareInterventionLearningMeasurableMedicalMental HealthMental disordersMentorsMethodsMiningNamesNatural Language ProcessingOutcomePatient Self-ReportPatientsPatternPharmaceutical PreparationsPharmacologic SubstancePhenotypeRecordsResearchResearch PersonnelRheumatologySeveritiesSourceStatistical ModelsStratificationStructureSubgroupSupervisionSymptomsTechniquesTerminologyTestingTextWorkbaseburden of illnesscareer developmentclinical decision-makingclinically actionableclinically relevantcohortdisease classificationdisorder subtypeelectronic dataevidence baseimprovedinnovationnovel strategiespatient stratificationphenotypic dataprecision medicinepredicting responseresponsetreatment response
项目摘要
ABSTRACT
This Career Development Application describes targeted coursework and mentored research for
progression to independent research in the use of electronic health record data for disease
subtyping. Electronic health records have demonstrated great promise as a scalable source of
data for biomedical research to enable “precision medicine.” Use of natural language processing
techniques has enabled computational analysis of specific terms found in free text clinical notes.
An improved ability to extract symptom information from clinical notes would improve
researchers’ ability to use de-identified data from patient records for discovery of disease
subtypes. Symptom-related terms are particularly important in the context of mental health, but
also harder to detect in notes than other terms like diseases or drug names.
The research aims of this proposal present a novel approach to scalable extension of
biomedical terminologies and improved detection of those terms and their modifiers (e.g. severe,
familial, absent). The richer dataset that can be extracted using these enhanced approaches is
then used to define patient cohorts and to detect disease subtypes and predictors of response to
specific pharmaceutical intervention.
Resulting patient stratification will be compared to groupings made without the enriched data
and validated on an independent data set. The overarching hypothesis of this work is that
enhanced mining of clinical notes will enable statistically significant and clinically relevant
symptom-based stratification of psychiatric disorders. In order to test this hypothesis, I will:
Aim 1: Develop a semi-automated pipeline for domain-specific terminology extension
Aim 2: Define and stratify patient cohorts through use of enhanced term extraction
Aim 3: Evaluate the validity and utility of the richer set of data obtained through Aims 1 and 2
One area of greatest need for more evidence-based disease stratification, and also of greatest
challenge for a number of reasons, is that of mental health. Mental health disorders account for
30% of non-fatal disease burden world-wide, and pose an economic burden of trillions of dollars
and climbing. Moreover, mental health symptoms are generally subjective and self-reported, with
few objectively measurable signs. The impact of this proposal is that it will dramatically improve
our ability to use EHR data to stratify patients in this drastically underserved area of health and
healthcare.
The major innovations of this project are the adaptation and application of a semi-supervised
pattern learning pipeline to augment mental health terminologies, and a novel approach to
disease stratification using a significantly underutilized source of biomedical data, namely clinical
notes.
This work addresses a major challenge for mining clinical notes in rapidly evolving biomedical
domains and leverages a valuable source of medical evidence that is largely untapped and
underutilized. Together, these methods for enhanced use of clinical notes will enable identification
of distinct patient subgroups using data that is sitting idle in EHRs.
摘要
这份职业发展申请描述了有针对性的课程工作和指导研究
在使用疾病电子健康记录数据方面的独立研究进展
子类型法。电子健康记录已显示出作为可扩展来源的巨大前景
为生物医学研究提供数据,使“精准医学”成为可能。自然语言处理的使用
技术使在自由文本临床笔记中找到的特定术语的计算分析成为可能。
从临床记录中提取症状信息的能力的提高将会改善
研究人员使用患者记录中未识别的数据发现疾病的能力
子类型。与症状相关的术语在心理健康的背景下特别重要,但
与疾病或药品名称等其他术语相比,笔记中也更难检测到。
该方案的研究目标为可伸缩扩展提供了一种新的方法
生物医学术语和这些术语及其修饰语的改进检测(例如,
有家族性,缺席)。可以使用这些增强方法提取的更丰富的数据集是
然后用来定义患者队列并检测疾病亚型和反应的预测因素
特定的药物干预。
将得到的患者分层与没有丰富数据的分组进行比较
并在独立的数据集上进行了验证。这项工作的首要假设是
增强的临床笔记挖掘将使统计意义重大和临床相关
精神障碍的基于症状的分层。为了检验这一假设,我将:
目标1:开发特定于领域的术语扩展的半自动管道
目标2:通过使用增强型术语提取对患者队列进行定义和分层
目标3:评价通过目标1和目标2获得的更丰富的数据集的有效性和实用性
一个最需要更多以证据为基础的疾病分层的领域,也是最
挑战的原因有很多,那就是心理健康。精神健康障碍占了
全世界30%的非致命性疾病造成了负担,并造成了数万亿美元的经济负担
还有攀登。此外,心理健康症状通常是主观的和自我报告的,
几乎没有客观可衡量的迹象。这项提议的影响是它将极大地改善
我们能够使用电子病历数据对这一服务严重不足的卫生和医疗领域的患者进行分层
医疗保健。
本项目的主要创新之处在于改编和应用了半监督的
增加心理健康术语的模式学习管道,以及一种新的方法
使用显著未充分利用的生物医学数据来源(即临床数据)进行疾病分层
笔记。
这项工作解决了在快速发展的生物医学中挖掘临床笔记的主要挑战
并利用了大量尚未开发和利用的有价值的医学证据来源
没有得到充分利用。这些加强临床记录使用的方法加在一起,将使识别
使用EHR中闲置的数据对不同的患者亚组进行分析。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
JESSICA D TENENBAUM其他文献
JESSICA D TENENBAUM的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
层出镰刀菌氮代谢调控因子AreA 介导伏马菌素 FB1 生物合成的作用机理
- 批准号:2021JJ40433
- 批准年份:2021
- 资助金额:0.0 万元
- 项目类别:省市级项目
寄主诱导梢腐病菌AreA和CYP51基因沉默增强甘蔗抗病性机制解析
- 批准号:32001603
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
AREA国际经济模型的移植.改进和应用
- 批准号:18870435
- 批准年份:1988
- 资助金额:2.0 万元
- 项目类别:面上项目
相似海外基金
Tribal Intertidal Digital Ecological Surveys Project: Using Large-Area Imaging to Assess Intertidal Biological Response to Changing Oceanographic Conditions in Partnership with Indigenous Nations
部落潮间带数字生态调查项目:与土著民族合作,利用大面积成像评估潮间带生物对不断变化的海洋条件的反应
- 批准号:
532685-2019 - 财政年份:2022
- 资助金额:
$ 18.91万 - 项目类别:
Postgraduate Scholarships - Doctoral
Tribal Intertidal Digital Ecological Surveys Project: Using Large-Area Imaging to Assess Intertidal Biological Response to Changing Oceanographic Conditions in Partnership with Indigenous Nations
部落潮间带数字生态调查项目:与土著民族合作,利用大面积成像评估潮间带生物对不断变化的海洋条件的反应
- 批准号:
532685-2019 - 财政年份:2020
- 资助金额:
$ 18.91万 - 项目类别:
Postgraduate Scholarships - Doctoral
biological interactions among forest-dwelling fungus gnats and their natural enemies in shiitake mashroom production area
香菇产区森林真菌蚊与其天敌之间的生物相互作用
- 批准号:
19K06152 - 财政年份:2019
- 资助金额:
$ 18.91万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Tribal Intertidal Digital Ecological Surveys Project: Using Large-Area Imaging to Assess Intertidal Biological Response to Changing Oceanographic Conditions in Partnership with Indigenous Nations
部落潮间带数字生态调查项目:与土著民族合作,利用大面积成像评估潮间带生物对不断变化的海洋条件的反应
- 批准号:
532685-2019 - 财政年份:2019
- 资助金额:
$ 18.91万 - 项目类别:
Postgraduate Scholarships - Doctoral
To what extent does governance play a role in how effectively a marine protected area in the Irish Sea reaches its biological and socioeconomic goals?
治理在多大程度上对爱尔兰海海洋保护区如何有效实现其生物和社会经济目标发挥作用?
- 批准号:
2287487 - 财政年份:2019
- 资助金额:
$ 18.91万 - 项目类别:
Studentship
War and Biological Ageing in Vietnam: A Planning Grant to Foster Collaboration on a Novel Area of Global Research in Health and Ageing
越南的战争与生物衰老:一项规划拨款,以促进全球健康与老龄化研究新领域的合作
- 批准号:
404425 - 财政年份:2019
- 资助金额:
$ 18.91万 - 项目类别:
Miscellaneous Programs
Impact assessment of Noctiluca scintillans red tide on nutrient dynamics, biological processes in lower trophic levels and material cycle in the neritic area of Sagami Bay
夜光藻赤潮对相模湾浅海区营养动态、低营养层生物过程和物质循环的影响评估
- 批准号:
18K05794 - 财政年份:2018
- 资助金额:
$ 18.91万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Large-area graphene based chemical and biological sensors
基于大面积石墨烯的化学和生物传感器
- 批准号:
355863-2011 - 财政年份:2015
- 资助金额:
$ 18.91万 - 项目类别:
Discovery Grants Program - Individual
Large-area graphene based chemical and biological sensors
基于大面积石墨烯的化学和生物传感器
- 批准号:
355863-2011 - 财政年份:2014
- 资助金额:
$ 18.91万 - 项目类别:
Discovery Grants Program - Individual
Theoretical simulation and experimental study on biological weathering mechanism of the rock around coastal area in Yaeyama Islands
八重山群岛沿岸岩石生物风化机制的理论模拟与实验研究
- 批准号:
26790079 - 财政年份:2014
- 资助金额:
$ 18.91万 - 项目类别:
Grant-in-Aid for Young Scientists (B)