(PQD1) An Iterative Approach for Overcoming Evolving Targeted Therapy Resistance
(PQD1) 克服不断变化的靶向治疗耐药性的迭代方法
基本信息
- 批准号:9319639
- 负责人:
- 金额:$ 32.89万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-08-01 至 2019-07-31
- 项目状态:已结题
- 来源:
- 关键词:AddressBiological AssayBirdsCancer PatientCellsClinicalDataDiseaseDoseDrug resistanceDrug toxicityEffectivenessEpidermal Growth Factor Receptor Tyrosine Kinase InhibitorEvolutionEyeFrequenciesHeterogeneityIndividualMalignant NeoplasmsMapsMolecularMulti-Drug ResistanceNaturePatternPharmacotherapyPopulationPopulation HeterogeneityPositioning AttributeResistanceResistance developmentShotgunsSurveysTestingTherapeuticTimeToxic effectTranslatingTumor Burdencancer cellcancer heterogeneitycancer therapychemotherapyclinical biomarkersclinically relevantdrug developmentdrug mechanismfitnessnew therapeutic targetnovel therapeuticspressureprototypepublic health relevancereagent testingresistance mechanismresponsetargeted treatmenttreatment planningtreatment strategytumorvirtual
项目摘要
DESCRIPTION (provided by applicant): Here, we investigate Provocative Question PQD1: "How does the selective pressure imposed by the use of different types and doses of targeted therapies modify the evolution of drug resistance?" The effectiveness of targeted therapy to prolong survival in cancer patients is limited by the inevitable development of drug resistance. Cancer populations constantly evolve, enabling subpopulations of cells to adapt and ultimately overcome drug treatment. A comprehensive understanding of potential drug-resistance mechanisms and their therapeutic vulnerabilities will form the basis for finding optimal targeted treatment plans of drug-resistant tumors. A common strategy for studying mechanisms of drug resistance is to generate a drug-resistant cancer population under a single selective pressure, and characterize its vulnerabilities using population-averaged assays. However, it is unclear which selective pressures should be varied to encourage the emergence and evolution of uncharacterized drug mechanisms. There are a virtually limitless number of parameters that could be varied, and it is unclear which would be productive to explore. Further, population-averaged assays largely characterize the fittest clones; clinically relevant mechanisms, which may appear at low frequencies in experimental settings, will be missed. As a result, the drug-resistance "landscape" has not been systematically explored. Here, we propose that drug resistance can be broadly surveyed instead by isolating and studying individual drug-resistant clones derived under a small number of selection conditions. We leverage the natural heterogeneity of cancer, traditionally viewed as an impediment for understanding the disease, to reveal the range of possible resistance mechanisms. Our preliminary studies strongly suggest that this strategy will unmask diverse drug mechanisms. To address PQD1, we assess the diversity of resistance mechanisms present in a cancer population and how this diversity changes in response to different selective pressures. In Aim 1, we use a "shotgun" approach for isolating large numbers of resistant clones from cancer populations treated with different targeted therapies. In Aim 2, we map our clonal populations into "resistance classes" defined by common therapeutic vulnerabilities. In Aim 3, we test how our resistant clones evolve under new selective pressures.
描述(由申请人提供):在这里,我们调查挑衅性问题 PQD1:“使用不同类型和剂量的靶向治疗所施加的选择压力如何改变耐药性的演变?”靶向治疗延长癌症患者生存期的有效性受到不可避免的耐药性的限制。癌症群体不断进化,使细胞亚群能够适应并最终克服药物治疗。全面了解潜在的耐药机制及其治疗脆弱性将为寻找耐药肿瘤的最佳靶向治疗方案奠定基础。研究耐药机制的一个常见策略是在单一选择压力下产生耐药癌症群体,并使用群体平均分析来表征其脆弱性。然而,尚不清楚应该改变哪些选择压力来鼓励未表征的药物机制的出现和进化。可以改变的参数数量几乎是无限的,但尚不清楚探索哪些参数会更有成效。此外,群体平均检测在很大程度上表征了最适应的克隆。在实验环境中可能出现频率较低的临床相关机制将被忽略。因此,耐药性“景观”尚未得到系统探索。在这里,我们建议可以通过分离和研究在少量选择条件下衍生的个体耐药克隆来广泛调查耐药性。我们利用癌症的自然异质性(传统上被视为理解该疾病的障碍)来揭示可能的耐药机制的范围。我们的初步研究强烈表明,这种策略将揭示多种药物机制。为了解决 PQD1,我们评估了癌症人群中存在的耐药机制的多样性,以及这种多样性如何响应不同的选择压力而变化。在目标 1 中,我们使用“鸟枪”方法从接受不同靶向疗法治疗的癌症群体中分离出大量耐药克隆。在目标 2 中,我们将克隆群体映射到由常见治疗漏洞定义的“耐药类别”。在目标 3 中,我们测试抗性克隆在新的选择压力下如何进化。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
LANI F WU其他文献
LANI F WU的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('LANI F WU', 18)}}的其他基金
(PQD1) An Iterative Approach for Overcoming Evolving Targeted Therapy Resistance
(PQD1) 克服不断变化的靶向治疗耐药性的迭代方法
- 批准号:
8902075 - 财政年份:2014
- 资助金额:
$ 32.89万 - 项目类别:
Maximizing the predictive power of high-throughput, microscopy-based phenotypic screens
最大限度地提高基于显微镜的高通量表型筛选的预测能力
- 批准号:
10589939 - 财政年份:2014
- 资助金额:
$ 32.89万 - 项目类别:
Maximizing the predictive power of high-throughput, microscopy-based phenotypic screens
最大限度地提高基于显微镜的高通量表型筛选的预测能力
- 批准号:
10090573 - 财政年份:2014
- 资助金额:
$ 32.89万 - 项目类别:
Maximizing the predictive power of high-throughput, microscopy-based phenotypic screens
最大限度地提高基于显微镜的高通量表型筛选的预测能力
- 批准号:
10395415 - 财政年份:2014
- 资助金额:
$ 32.89万 - 项目类别:
A scalable image-based approach for profiling and annotating very large compound
一种可扩展的基于图像的方法,用于分析和注释非常大的化合物
- 批准号:
8762292 - 财政年份:2014
- 资助金额:
$ 32.89万 - 项目类别:
A scalable image-based approach for profiling and annotating very large compound
一种可扩展的基于图像的方法,用于分析和注释非常大的化合物
- 批准号:
9320520 - 财政年份:2014
- 资助金额:
$ 32.89万 - 项目类别:
(PQD1) An Iterative Approach for Overcoming Evolving Targeted Therapy Resistance
(PQD1) 克服不断变化的靶向治疗耐药性的迭代方法
- 批准号:
8687271 - 财政年份:2014
- 资助金额:
$ 32.89万 - 项目类别:
Maximizing the predictive power of high-throughput, microscopy-based phenotypic screens
最大限度地提高基于显微镜的高通量表型筛选的预测能力
- 批准号:
9885647 - 财政年份:2014
- 资助金额:
$ 32.89万 - 项目类别:
Image based phenotypic profiling of single-cell responses to perturbations
基于图像的单细胞对扰动反应的表型分析
- 批准号:
7490637 - 财政年份:2007
- 资助金额:
$ 32.89万 - 项目类别:
相似海外基金
Establishment of a new biological assay using Hydra nematocyst deployment
利用水螅刺丝囊部署建立新的生物测定方法
- 批准号:
520728-2017 - 财政年份:2017
- 资助金额:
$ 32.89万 - 项目类别:
University Undergraduate Student Research Awards
POINT-OF-CARE BIOLOGICAL ASSAY FOR DETERMINING TISSUE-SPECIFIC ABSORBED IONIZING RADIATION DOSE (BIODOSIMETER) AFTER RADIOLOGICAL AND NUCLEAR EVENTS.
用于确定放射和核事件后组织特异性吸收电离辐射剂量(生物剂量计)的护理点生物测定。
- 批准号:
10368760 - 财政年份:2017
- 资助金额:
$ 32.89万 - 项目类别:
POINT-OF-CARE BIOLOGICAL ASSAY FOR DETERMINING TISSUE-SPECIFIC ABSORBED IONIZING RADIATION DOSE (BIODOSIMETER) AFTER RADIOLOGICAL AND NUCLEAR EVENTS.
用于确定放射和核事件后组织特异性吸收电离辐射剂量(生物剂量计)的护理点生物测定。
- 批准号:
10669539 - 财政年份:2017
- 资助金额:
$ 32.89万 - 项目类别:
POINT-OF-CARE BIOLOGICAL ASSAY FOR DETERMINING TISSUE-SPECIFIC ABSORBED IONIZING RADIATION DOSE (BIODOSIMETER) AFTER RADIOLOGICAL AND NUCLEAR EVENTS.
用于确定放射和核事件后组织特异性吸收电离辐射剂量(生物剂量计)的护理点生物测定。
- 批准号:
9570142 - 财政年份:2017
- 资助金额:
$ 32.89万 - 项目类别:
POINT-OF-CARE BIOLOGICAL ASSAY FOR DETERMINING TISSUE-SPECIFIC ABSORBED IONIZING RADIATION DOSE (BIODOSIMETER) AFTER RADIOLOGICAL AND NUCLEAR EVENTS.
用于确定放射和核事件后组织特异性吸收电离辐射剂量(生物剂量计)的护理点生物测定。
- 批准号:
9915803 - 财政年份:2017
- 资助金额:
$ 32.89万 - 项目类别:
COVID-19 Supplemental work: POINT-OF-CARE BIOLOGICAL ASSAY FOR DETERMINING TISSUE-SPECIFIC ABSORBED IONIZING RADIATION DOSE (BIODOSIMETER).
COVID-19 补充工作:用于确定组织特异性吸收电离辐射剂量的护理点生物测定(生物剂量计)。
- 批准号:
10259999 - 财政年份:2017
- 资助金额:
$ 32.89万 - 项目类别:
Drug discovery based on a new biological assay system using Yeast knock-out strain collection
基于使用酵母敲除菌株收集的新生物测定系统的药物发现
- 批准号:
21580130 - 财政年份:2009
- 资助金额:
$ 32.89万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Machine learning for automatic gene annotation using high-throughput biological assay data
使用高通量生物测定数据进行自动基因注释的机器学习
- 批准号:
300985-2004 - 财政年份:2005
- 资助金额:
$ 32.89万 - 项目类别:
Postdoctoral Fellowships
Machine learning for automatic gene annotation using high-throughput biological assay data
使用高通量生物测定数据进行自动基因注释的机器学习
- 批准号:
300985-2004 - 财政年份:2004
- 资助金额:
$ 32.89万 - 项目类别:
Postdoctoral Fellowships