Maximizing the predictive power of high-throughput, microscopy-based phenotypic screens
最大限度地提高基于显微镜的高通量表型筛选的预测能力
基本信息
- 批准号:9885647
- 负责人:
- 金额:$ 48.08万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-08-01 至 2025-03-31
- 项目状态:未结题
- 来源:
- 关键词:Active LearningAddressAdoptionAffectBiologicalBiological MarkersCancer cell lineCell Cycle RegulationCell LineChemical StructureChemicalsCollectionCommunitiesComputer Vision SystemsComputing MethodologiesConsumptionData SetDetectionDiseaseDrug ScreeningDrug resistanceEpigenetic ProcessEvaluationFundingFutureGenerationsGeneticGrantImageIndividualKnowledgeLaboratoriesLearningLibrariesMachine LearningMalignant NeoplasmsMethodsMicroscopyModelingMolecular TargetMutationPathway interactionsPharmaceutical PreparationsPhenotypePropertyProteomicsResearch PersonnelStructureTimebasecancer typechemical geneticsdeep learningdesigndrug discoverydruggable targetexperimental studyfightinggenetic profilingimaging approachimprovedinnovationlearning strategynew therapeutic targetnovelpatient subsetsproteostasisresponsescreeningside effectsmall moleculetranscriptomics
项目摘要
PROJECT SUMMARY
We currently have an unprecedented ability to profile the genetic- and pathway-level changes that occur in cancer. Yet, clinicians lack the diverse arsenal of drugs needed to treat subpopulations of patients more effectively, reduce side effects and offer second-line treatment when drug resistance emerges. There is a pressing need to dramatically increase the repertoire of drugs available to fight cancer.
Advances in automated microscopy and computer vision, allow the widespread use of phenotypic profiling in early drug discovery. In this grant, we address two challenges. First, the power of phenotypic profiling has led to a growing number of large, disparate image datasets. In aim 1, we will develop machine-learning approaches that combine disparate datasets to obtain accurate predictions of uncharacterized compound function. Second, phenotypic screens can identify candidate compounds across multiple, diverse pathways, but often only use a single cancer cell line. In aim 2, we will develop strategies to identify minimal collections of cell lines that maximize detection of small molecule activities.
Successful execution will: increase the power of phenotypic profiling by harnessing existing phenotypic screening datasets and providing a rational approach for selecting cell lines that maximize the chance of discovering hits in desired pathways.
项目摘要
我们目前拥有前所未有的能力来描述癌症中发生的遗传和途径水平的变化。然而,临床医生缺乏更有效地治疗患者亚群所需的各种药物,减少副作用,并在出现耐药性时提供二线治疗。迫切需要大幅增加可用于对抗癌症的药物种类。
自动化显微镜和计算机视觉的进步,允许在早期药物发现中广泛使用表型分析。在这份赠款中,我们解决了两个挑战。首先,表型分析的力量已经导致越来越多的大型,不同的图像数据集。在目标1中,我们将开发机器学习方法,将联合收割机不同的数据集结合起来,以获得未表征的复合函数的准确预测。第二,表型筛选可以识别多种不同途径的候选化合物,但通常只使用单一的癌细胞系。在目标2中,我们将开发策略来识别最小的细胞系集合,以最大限度地检测小分子活性。
成功执行将:通过利用现有的表型筛选数据集并提供用于选择细胞系的合理方法来增加表型分析的能力,所述细胞系最大化发现所需途径中的命中的机会。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
LANI F WU其他文献
LANI F WU的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('LANI F WU', 18)}}的其他基金
(PQD1) An Iterative Approach for Overcoming Evolving Targeted Therapy Resistance
(PQD1) 克服不断变化的靶向治疗耐药性的迭代方法
- 批准号:
8902075 - 财政年份:2014
- 资助金额:
$ 48.08万 - 项目类别:
Maximizing the predictive power of high-throughput, microscopy-based phenotypic screens
最大限度地提高基于显微镜的高通量表型筛选的预测能力
- 批准号:
10589939 - 财政年份:2014
- 资助金额:
$ 48.08万 - 项目类别:
Maximizing the predictive power of high-throughput, microscopy-based phenotypic screens
最大限度地提高基于显微镜的高通量表型筛选的预测能力
- 批准号:
10090573 - 财政年份:2014
- 资助金额:
$ 48.08万 - 项目类别:
A scalable image-based approach for profiling and annotating very large compound
一种可扩展的基于图像的方法,用于分析和注释非常大的化合物
- 批准号:
8762292 - 财政年份:2014
- 资助金额:
$ 48.08万 - 项目类别:
Maximizing the predictive power of high-throughput, microscopy-based phenotypic screens
最大限度地提高基于显微镜的高通量表型筛选的预测能力
- 批准号:
10395415 - 财政年份:2014
- 资助金额:
$ 48.08万 - 项目类别:
A scalable image-based approach for profiling and annotating very large compound
一种可扩展的基于图像的方法,用于分析和注释非常大的化合物
- 批准号:
9320520 - 财政年份:2014
- 资助金额:
$ 48.08万 - 项目类别:
(PQD1) An Iterative Approach for Overcoming Evolving Targeted Therapy Resistance
(PQD1) 克服不断变化的靶向治疗耐药性的迭代方法
- 批准号:
8687271 - 财政年份:2014
- 资助金额:
$ 48.08万 - 项目类别:
(PQD1) An Iterative Approach for Overcoming Evolving Targeted Therapy Resistance
(PQD1) 克服不断变化的靶向治疗耐药性的迭代方法
- 批准号:
9319639 - 财政年份:2014
- 资助金额:
$ 48.08万 - 项目类别:
Image based phenotypic profiling of single-cell responses to perturbations
基于图像的单细胞对扰动反应的表型分析
- 批准号:
7490637 - 财政年份:2007
- 资助金额:
$ 48.08万 - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 48.08万 - 项目类别:
Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 48.08万 - 项目类别:
Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 48.08万 - 项目类别:
Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 48.08万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 48.08万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 48.08万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 48.08万 - 项目类别:
EU-Funded
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 48.08万 - 项目类别:
Standard Grant
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 48.08万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 48.08万 - 项目类别:
Research Grant