Identifying Risk Factors for PTSD by Pooled Analysis of Current Prospective Studi
通过对当前前瞻性研究的汇总分析来识别 PTSD 的风险因素
基本信息
- 批准号:9308011
- 负责人:
- 金额:$ 57.51万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-07-21 至 2019-04-30
- 项目状态:已结题
- 来源:
- 关键词:Accident and Emergency departmentAcuteAddressAlgorithmsAttentionBiological MarkersChronicClinicalCollectionComorbidityComputer softwareControlled Clinical TrialsDataData AnalysesData CollectionData SetDisastersDiseaseExclusionExclusion CriteriaExposure toFemaleForcible intercourseFoundationsFutureGenderGoalsGrowthHealthcareHeterogeneityImpairmentIndividualInjuryIntensive Care UnitsInterventionInterviewLongitudinal StudiesMeasuresMental disordersMeta-AnalysisMinorityModelingOnset of illnessOutcomeParticipantPatient RecruitmentsPersonsPhasePhysiologicalPoliciesPost-Traumatic Stress DisordersPredictive AnalyticsPreventive InterventionPrincipal InvestigatorProspective StudiesPublishingQuestionnairesRecommendationRecording of previous eventsRecoveryReportingResearchRespondentRiskRisk FactorsSamplingSelf-AdministeredSeveritiesStatistical Data InterpretationStructureSurvivorsSymptomsTechniquesTimeTraffic accidentsTraumaWorkbasebiological adaptation to stressclinical decision-makingcostcost effectivedata miningdisorder riskhigh riskimprovedinclusion criteriainstrumentmalepediatric traumaprediction algorithmpredictive modelingprospectivepublic health relevanceresearch studyresponsesecondary analysissoftware developmenttime usetooltrauma centerstraumatic event
项目摘要
DESCRIPTION (provided by applicant): Posttraumatic stress disorder (PTSD) is a commonly occurring and seriously impairing disorder that occurs after exposure to traumatic events (TEs). Symptoms typically begin shortly after TE exposure and evolve with time to either chronicity or recovery. PTSD is one of the most preventable mental disorders, as many people exposed to TEs come to clinical attention in first response settings. Controlled clinical trials show that PTS risk can be significantly reduced by early preventive interventions. However, these interventions have nontrivial costs, making it infeasible to offer them to all persons exposed to TEs given that only a small minority goes on to develop PTSD. They are also unnecessary for many survivors who recovery spontaneously. To be cost-effective, risk prediction rules are needed to identify which exposed persons are at high risk of PTSD taking into consideration that predictors may vary between samples, within samples (e.g., between male and female survivors) and at different time lags from the TE. A number of research studies have collected longitudinal data addressing this issue by assessing potential predictors of PTSD among TE victims starting in first response healthcare settings, following participants over time, and using baseline data to predict subsequent PTSD. However, these studies' results have often been presented as changes in groups' average likelihood and were not synthesized in a way that would be practical, useful and predictive of individual risk. Therefore, we created a consortium of the principal investigators of the most important such studies to combine their individual- and item-level data towards carrying out a pooled secondary analysis to synthesize information about the predictors of PTSD. Our Specific Aims are: (1): To construct a consolidated dataset of individual-level data from 16 of the most important longitudinal studies of predictors of PTSD among TE victims starting in first response healthcare settings. These studies assessed a total of 6,390 respondents, 14% of whom have developed acute PTSD; (2): To estimate a latent growth mixture model (LGMM) of PTSD symptom trajectories in the roughly 92% of the consolidated sample (n = 5,917) assessed between one and three times after baseline with the CAPS and then to evaluate the sensitivity of model results to between-sample differences in trajectories and PTSD symptom measures; (3): To estimate the magnitude and cross-study consistency of associations between baseline predictors and PTSD outcomes (acute PTSD in the total sample; PTSD persistence among acute cases; LGMM PTSD class membership and symptom trajectories); (4): To use the results in Aim 3 to develop recommendations for the PTSD risk factors to be assessed in the future in first response settings along with software to facilitate systematic data collection and inform clinical decision making. We seek support to construct this consolidated dataset, to carry out and report the results of analyses, and to develop a risk prediction tool that can be used in first response settings.
描述(由申请人提供):创伤后应激障碍(PTSD)是一种常见的严重损害性障碍,发生在暴露于创伤事件(TE)后。症状通常在TE暴露后不久开始,并随着时间的推移发展为慢性或恢复。PTSD是最可预防的精神疾病之一,因为许多暴露于TE的人在第一反应环境中受到临床关注。对照临床试验表明,PTS的风险可以通过早期预防干预显着降低。然而,这些干预措施的成本并不低,考虑到只有一小部分人会继续发展为PTSD,因此不可能向所有暴露于TEs的人提供这些干预措施。对于许多自发康复的幸存者来说,它们也是不必要的。为了具有成本效益,需要风险预测规则来识别哪些暴露者处于PTSD的高风险中,考虑到预测因子在样本之间、样本内(例如,在男性和女性幸存者之间)和在TE的不同时间滞后。一些研究已经收集了纵向数据,通过评估TE受害者中PTSD的潜在预测因子来解决这个问题,这些患者从第一反应医疗机构开始,随着时间的推移跟踪参与者,并使用基线数据来预测随后的PTSD。然而,这些研究的结果往往被视为群体平均可能性的变化,而不是以实用、有用和预测个人风险的方式加以综合。因此,我们创建了一个由最重要的此类研究的主要研究者组成的联盟,以联合收割机将他们的个人和项目水平的数据结合起来,进行汇总的二级分析,以综合有关PTSD预测因子的信息。我们的具体目标是:(一):从16项最重要的TE受害者PTSD预测因子的纵向研究中构建一个统一的个人水平数据集,这些研究始于第一反应医疗机构。这些研究共评估了6,390名受访者,其中14%患有急性PTSD;(2):在大约92%的合并样本中估计PTSD症状轨迹的潜在增长混合模型(LGMM)(n = 5,917)在基线后用CAPS评估1 - 3次,然后评估模型结果对以下因素的敏感性:轨迹和PTSD症状测量的样本差异;(3):估计基线预测因子和PTSD结果之间相关性的大小和跨研究一致性(总样本中的急性PTSD;急性病例中的PTSD持续性; LGMM PTSD类别成员和症状轨迹);(4):使用目标3中的结果,为将来在第一反应环境中评估的PTSD风险因素制定建议,沿着软件,以促进系统性数据收集并为临床决策提供信息。我们寻求支持,以构建这一综合数据集,进行和报告分析结果,并开发一个可用于第一反应环境的风险预测工具。
项目成果
期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Clinical implications of the proposed ICD-11 PTSD diagnostic criteria.
- DOI:10.1017/s0033291718001101
- 发表时间:2019-03
- 期刊:
- 影响因子:6.9
- 作者:Barbano AC;van der Mei WF;Bryant RA;Delahanty DL;deRoon-Cassini TA;Matsuoka YJ;Olff M;Qi W;Ratanatharathorn A;Schnyder U;Seedat S;Kessler RC;Koenen KC;Shalev AY
- 通讯作者:Shalev AY
Application of data pooling to longitudinal studies of early post-traumatic stress disorder (PTSD): the International Consortium to Predict PTSD (ICPP) project.
数据集合在创伤后应激障碍(PTSD)的纵向研究中的应用:国际联盟预测PTSD(ICPP)项目。
- DOI:10.1080/20008198.2018.1476442
- 发表时间:2018
- 期刊:
- 影响因子:5
- 作者:Qi W;Ratanatharathorn A;Gevonden M;Bryant R;Delahanty D;Matsuoka Y;Olff M;deRoon-Cassini T;Schnyder U;Seedat S;Laska E;Kessler RC;Koenen K;Shalev A;ICPP
- 通讯作者:ICPP
Posttraumatic stress disorder symptom trajectories within the first year following emergency department admissions: pooled results from the International Consortium to predict PTSD.
- DOI:10.1017/s0033291719004008
- 发表时间:2021-05
- 期刊:
- 影响因子:6.9
- 作者:Lowe SR;Ratanatharathorn A;Lai BS;van der Mei W;Barbano AC;Bryant RA;Delahanty DL;Matsuoka YJ;Olff M;Schnyder U;Laska E;Koenen KC;Shalev AY;Kessler RC
- 通讯作者:Kessler RC
Evaluating a screener to quantify PTSD risk using emergency care information: a proof of concept study.
使用紧急护理信息评估筛查仪以量化 PTSD 风险:概念验证研究。
- DOI:10.1186/s12873-020-00308-z
- 发表时间:2020
- 期刊:
- 影响因子:2.5
- 作者:vanderMei,WillemF;Barbano,AnnaC;Ratanatharathorn,Andrew;Bryant,RichardA;Delahanty,DouglasL;deRoon-Cassini,TerriA;Lai,BettyS;Lowe,SarahR;Matsuoka,YutakaJ;Olff,Miranda;Qi,Wei;Schnyder,Ulrich;Seedat,Soraya;Kessler,Ronald
- 通讯作者:Kessler,Ronald
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
RONALD C KESSLER其他文献
RONALD C KESSLER的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('RONALD C KESSLER', 18)}}的其他基金
Leveraging EHR data to evaluate key treatment decisions to prevent suicide-related behaviors
利用 EHR 数据评估关键治疗决策,以预防自杀相关行为
- 批准号:
10311082 - 财政年份:2020
- 资助金额:
$ 57.51万 - 项目类别:
Leveraging EHR data to evaluate key treatment decisions to prevent suicide-related behaviors
利用 EHR 数据评估关键治疗决策,以预防自杀相关行为
- 批准号:
10516042 - 财政年份:2020
- 资助金额:
$ 57.51万 - 项目类别:
Longitudinal Assessment of Post-traumatic Syndromes
创伤后综合症的纵向评估
- 批准号:
9756462 - 财政年份:2016
- 资助金额:
$ 57.51万 - 项目类别:
Longitudinal Assessment of Post-traumatic Syndromes
创伤后综合症的纵向评估
- 批准号:
10019595 - 财政年份:2016
- 资助金额:
$ 57.51万 - 项目类别:
Longitudinal Assessment of Post-traumatic Syndromes
创伤后综合症的纵向评估
- 批准号:
10021207 - 财政年份:2016
- 资助金额:
$ 57.51万 - 项目类别:
Identifying Risk Factors for PTSD by Pooled Analysis of Current Prospective Studi
通过对当前前瞻性研究的汇总分析来识别 PTSD 的风险因素
- 批准号:
8695945 - 财政年份:2014
- 资助金额:
$ 57.51万 - 项目类别:
Epidemiology - National Comorbidity Survey Replication
流行病学 - 全国合并症调查复制
- 批准号:
7871127 - 财政年份:2009
- 资助金额:
$ 57.51万 - 项目类别:
Risk Factors for Psychopathology in the WHO WMH Surveys
世界卫生组织 WMH 调查中的精神病理学危险因素
- 批准号:
6965794 - 财政年份:2005
- 资助金额:
$ 57.51万 - 项目类别:
相似海外基金
Transcriptional assessment of haematopoietic differentiation to risk-stratify acute lymphoblastic leukaemia
造血分化的转录评估对急性淋巴细胞白血病的风险分层
- 批准号:
MR/Y009568/1 - 财政年份:2024
- 资助金额:
$ 57.51万 - 项目类别:
Fellowship
Combining two unique AI platforms for the discovery of novel genetic therapeutic targets & preclinical validation of synthetic biomolecules to treat Acute myeloid leukaemia (AML).
结合两个独特的人工智能平台来发现新的基因治疗靶点
- 批准号:
10090332 - 财政年份:2024
- 资助金额:
$ 57.51万 - 项目类别:
Collaborative R&D
Acute senescence: a novel host defence counteracting typhoidal Salmonella
急性衰老:对抗伤寒沙门氏菌的新型宿主防御
- 批准号:
MR/X02329X/1 - 财政年份:2024
- 资助金额:
$ 57.51万 - 项目类别:
Fellowship
Cellular Neuroinflammation in Acute Brain Injury
急性脑损伤中的细胞神经炎症
- 批准号:
MR/X021882/1 - 财政年份:2024
- 资助金额:
$ 57.51万 - 项目类别:
Research Grant
KAT2A PROTACs targetting the differentiation of blasts and leukemic stem cells for the treatment of Acute Myeloid Leukaemia
KAT2A PROTAC 靶向原始细胞和白血病干细胞的分化,用于治疗急性髓系白血病
- 批准号:
MR/X029557/1 - 财政年份:2024
- 资助金额:
$ 57.51万 - 项目类别:
Research Grant
Combining Mechanistic Modelling with Machine Learning for Diagnosis of Acute Respiratory Distress Syndrome
机械建模与机器学习相结合诊断急性呼吸窘迫综合征
- 批准号:
EP/Y003527/1 - 财政年份:2024
- 资助金额:
$ 57.51万 - 项目类别:
Research Grant
FITEAML: Functional Interrogation of Transposable Elements in Acute Myeloid Leukaemia
FITEAML:急性髓系白血病转座元件的功能研究
- 批准号:
EP/Y030338/1 - 财政年份:2024
- 资助金额:
$ 57.51万 - 项目类别:
Research Grant
STTR Phase I: Non-invasive focused ultrasound treatment to modulate the immune system for acute and chronic kidney rejection
STTR 第一期:非侵入性聚焦超声治疗调节免疫系统以治疗急性和慢性肾排斥
- 批准号:
2312694 - 财政年份:2024
- 资助金额:
$ 57.51万 - 项目类别:
Standard Grant
ロボット支援肝切除術は真に低侵襲なのか?acute phaseに着目して
机器人辅助肝切除术真的是微创吗?
- 批准号:
24K19395 - 财政年份:2024
- 资助金额:
$ 57.51万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Acute human gingivitis systems biology
人类急性牙龈炎系统生物学
- 批准号:
484000 - 财政年份:2023
- 资助金额:
$ 57.51万 - 项目类别:
Operating Grants