Integrated Neurocognitive and Sleep-Behavior Profiler for the Endophenotypic Classification of Dementia Subtypes (INSPECDS)
用于痴呆亚型内表型分类的综合神经认知和睡眠行为分析仪 (INSPECDS)
基本信息
- 批准号:9360534
- 负责人:
- 金额:$ 72.77万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-09-30 至 2021-05-31
- 项目状态:已结题
- 来源:
- 关键词:AccelerometerAddressAdultAlgorithmsAlzheimer&aposs DiseaseArchitectureAutomatic Data ProcessingBehaviorBehavior assessmentBiological MarkersBlindedBrainCaliforniaCardiovascular DiseasesCause of DeathCharacteristicsChinClassificationClinicClinicalClinical ResearchClinical TrialsDataData AnalysesDatabasesDementiaDepressed moodDevicesDiagnosisDiseaseDisease ProgressionDrug IndustryEconomic BurdenElderlyElectrocardiogramElectroencephalographyElectrophysiology (science)EnrollmentEtiologyFDA approvedFundingGeneral HospitalsGoalsHead MovementsHome environmentIndividualLewy Body DementiaMachine LearningMalignant NeoplasmsMassachusettsMeasuresMemoryMinorModificationMonitorNeurocognitiveNeurodegenerative DisordersNeuropsychological TestsObstructive Sleep ApneaParkinson&aposs DementiaParticipantPatientsPerformancePhaseProbabilityProcessREM Sleep Behavior DisorderReportingResearchResearch InfrastructureResearch PersonnelSamplingSecureSleepSleep ArchitectureSleep DeprivationSmall Business Innovation Research GrantStratificationStrokeStudy SubjectSystemTechnologyTimeTrainingUnited States National Institutes of HealthUniversitiesWireless Technologyalertnessbasebrain behaviorcloud basedcognitive functioncohortcomputerizeddata acquisitiondiagnostic accuracygenetic associationhuman subjectlimb movementmild cognitive impairmentneurocognitive testpublic health relevancerelating to nervous systemsynucleinopathytool
项目摘要
DESCRIPTION (provided by applicant): It is estimated that neurodegenerative diseases causing dementia will surpass cancer as the leading cause of death by the year 2040. Alzheimer's disease (AD) is the leading cause of dementia, followed by synucleinopathies, such as dementia with Lewy bodies (DLB) and Parkinson's disease with dementia (PDD). Among clinical researchers focused on investigating the varying etiologies, genetic associations, biomarkers, and treatment options for these neurodengenerative diseases, there is an urgent need for effective tools to aid in the classification of dementia subtypes, in the earliest detectable stages of the pathophysiological process. To address this unmet need Advanced Brain Monitoring (ABM) proposes to leverage two previously developed technologies to create an Integrated Neurocognitive and Sleep-Behavior Profiler for the Endophenotypic Classification of Dementia Subtypes (INSPECDS). The core components of the INSPECDS platform will be a previously developed Alertness and Memory Profiler (AMP), a recently developed Sleep Profiler, and integrated machine-learning, classification algorithms, hosted on a secure, cloud-based, infrastructure for automated data processing, analysis, and reporting. The AMP was developed and validated during a previous NIH-funded SBIR Phase I/II project for the purpose of detecting the neurocognitive effects of sleep deprivation in adults diagnosed with obstructive sleep apnea. The AMP is truly unique among neurocognitive testing platforms in that it is the only one which integrates advanced, electrophysiological measures (e.g., 24-channel, wireless EEG and ECG) during the performance of computerized neurocognitive tasks. This advanced capability permits researchers to explore real-time relations between fluctuations in alertness, discrete cognitive functions, and specific neural processes believed to subserve observed performance deficits. The Sleep Profiler is an FDA-cleared, easily applied, wireless-EEG device that was developed and validated to measure sleep architecture for in-home sleep studies. With integrated measures of submental (chin) EMG and wireless accelerometers to monitor head and limb movements, the Sleep Profiler is an ideal device for quantifying the characteristics of REM-sleep behavior disorder (RBD), which is considered to be a prodromal expression of synucleinopathy. Furthermore, the application of sophisticated, machine-learning, classification algorithms will streamline the processing and analyses of these data to derive statistical probabilities of various dementia subtypes. The overarching goal of the current, Direct-to-Phase II, SBIR project is to develop a secure, cloud-based infrastructure to compile the data obtained from the AMP and Sleep Profiler, train classification algorithms to discriminate among dementia subtypes, validate diagnostic accuracy, and integrate optimized classifiers within the cloud-based architecture. Once completed, the INSPECDS system will be the first clinical research tool of its kind and find immediate application in both university-based research settings and pharmaceutical industry clinical trials to aid in the endophenotypic stratification of research participants.
描述(由适用提供):据估计,神经退行性疾病会导致痴呆症成为2040年的主要死亡原因。阿尔茨海默氏病(AD)是痴呆症的主要原因,其次是突触核心疗法,其次是与Lewy Body(DLB)和Parkinson nistion and Parkinson and Parkinson's Disephise and Dementia(Pd)(Pd)(Pd)(Pd)。在临床研究人员中,专注于研究这些神经传播疾病的不同病因,遗传关联,生物标志物和治疗方案,迫切需要有效的工具来帮助对痴呆症亚型的分类,在病理学过程的最早可检测的阶段。为了解决这一未满足的需求,高级大脑监测(ABM)提案,以利用两种先前开发的技术来创建一种综合的神经认知和睡眠行为剖面,以对痴呆症亚型(ISSECD)进行内型型分类。 Inspecds平台的核心组件将是先前开发的警觉性和内存探照室(AMP),这是最近开发的睡眠剖面和集成的机器学习,分类算法,该算法托管在安全的,基于云的基于云的基础架构上,用于自动数据处理,分析,分析和报告。在先前由NIH资助的SBIR I/II期项目中开发和验证了AMP,目的是检测被诊断为阻塞性睡眠呼吸暂停的成年人的睡眠剥夺的神经认知效应。在神经认知测试平台中,AMP确实是独特的,因为它是唯一在计算机化的神经认知任务执行过程中唯一集成了高级电生理测量(例如24通道,无线EEG和ECG)的方法。这种高级能力允许研究人员探索机敏性波动,离散的认知功能以及被认为可以观察到的性能定义的特定神经过程之间的实时关系。 Sleep Profiler是一种FDA清除,易于应用,无线EEG设备,已开发和验证,以测量用于家庭睡眠研究的睡眠体系结构。借助底物(CHIN)EMG和无线加速度计的综合测量来监测头部和肢体的运动,睡眠剖面是量化REM-囊性行为障碍(RBD)特征的理想装置,这被认为是突触核酸核酸的前驱表达。此外,复杂的机器学习,分类算法的应用将简化这些数据的处理和分析以得出各种痴呆症亚型的统计可能性。当前,直接直接到相的SBIR项目的总体目标是开发一个安全的,基于云的基础架构,以编译从AMP和Sleep Profiler,Train Claber,火车分类算法中获得的数据,以区分痴呆症亚型,验证诊断精度,并在云基于云的架构中进行集成优化的分类器。完成后,InspeCDS系统将成为同类临床研究工具,并在基于大学的研究环境和制药行业临床试验中立即应用,以帮助研究参与者的内植液分层。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Chris Berka其他文献
Chris Berka的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Chris Berka', 18)}}的其他基金
CANNABIS IMPAIRMENT DETECTION APPLICATION (CIDA) (T163). SBIR PHASE II. POP: 9/20/2019-9/19/2021. N44DA-19-1218.
大麻损害检测申请(CIDA)(T163)。
- 批准号:
10044153 - 财政年份:2019
- 资助金额:
$ 72.77万 - 项目类别:
Characterizing Alzheimer's Disease with INSPECDS: Integrated Neurocognitive and Sleep-Behavior Profiler for the Endophenotypic Classification of Dementia Subtypes
使用 INSPECDS 表征阿尔茨海默病:用于痴呆亚型内表型分类的综合神经认知和睡眠行为分析仪
- 批准号:
9345457 - 财政年份:2017
- 资助金额:
$ 72.77万 - 项目类别:
Multi-site longitudinal Integrated Neurocognitive and Sleep-Behavior Profiler for the Endophenotypic Classification of Dementia Subtypes (INSPECDS)
用于痴呆亚型内表型分类的多部位纵向综合神经认知和睡眠行为分析仪 (INSPECDS)
- 批准号:
10603714 - 财政年份:2016
- 资助金额:
$ 72.77万 - 项目类别:
Integrated Neurocognitive and Sleep-Behavior Profiler for the Endophenotypic Classification of Dementia Subtypes (INSPECDS)
用于痴呆亚型内表型分类的综合神经认知和睡眠行为分析仪 (INSPECDS)
- 批准号:
9046620 - 财政年份:2016
- 资助金额:
$ 72.77万 - 项目类别:
Multi-site longitudinal Integrated Neurocognitive and Sleep-Behavior Profiler for the Endophenotypic Classification of Dementia Subtypes (INSPECDS)
用于痴呆亚型内表型分类的多部位纵向综合神经认知和睡眠行为分析仪 (INSPECDS)
- 批准号:
10707195 - 财政年份:2016
- 资助金额:
$ 72.77万 - 项目类别:
OTHER FUNCTIONS: QUANTIFICATION OF BEHAVIORAL AND PHYSIOLOGICAL EFFECTS OF DRUGS
其他功能:药物行为和生理影响的量化
- 批准号:
8563859 - 财政年份:2012
- 资助金额:
$ 72.77万 - 项目类别:
A Novel Approach to Assessing Cognitive State During Real-World Tasks
评估现实世界任务中认知状态的新方法
- 批准号:
8934148 - 财政年份:2011
- 资助金额:
$ 72.77万 - 项目类别:
A Novel Approach to Assessing Cognitive State During Real-World Tasks
评估现实世界任务中认知状态的新方法
- 批准号:
8847048 - 财政年份:2011
- 资助金额:
$ 72.77万 - 项目类别:
TAS::75 0893::TAS QUANTIFICATION OF BEHAVIORAL & PHYSIOLOGICAL EFFECTS OF DRUGS
TAS::75 0893::TAS 行为量化
- 批准号:
8338939 - 财政年份:2011
- 资助金额:
$ 72.77万 - 项目类别:
The Neurocognitive Profile: A High Efficiency Integrated Brain-Behavior Assay
神经认知概况:高效的大脑行为综合分析
- 批准号:
7272213 - 财政年份:2007
- 资助金额:
$ 72.77万 - 项目类别:
相似国自然基金
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Utility and feasibility of activity type to augment consumer wearable-based physical activity energy expenditure prediction equations using heartrate and movement in children
使用儿童心率和运动来增强基于消费者可穿戴设备的身体活动能量消耗预测方程的活动类型的实用性和可行性
- 批准号:
10677143 - 财政年份:2023
- 资助金额:
$ 72.77万 - 项目类别:
Relationships Between Pain-Related Psychological Factors, Gait Quality, and Attention in Chronic Low Back Pain
慢性腰痛中疼痛相关心理因素、步态质量和注意力之间的关系
- 批准号:
10679189 - 财政年份:2023
- 资助金额:
$ 72.77万 - 项目类别:
Move and Snooze: Adding insomnia treatment to an exercise program to improve pain outcomes in older adults with knee osteoarthritis
活动和小睡:在锻炼计划中添加失眠治疗,以改善患有膝骨关节炎的老年人的疼痛结果
- 批准号:
10797056 - 财政年份:2023
- 资助金额:
$ 72.77万 - 项目类别:
Digital monitoring of autonomic activity to detect empathy loss in behavioral variant frontotemporal dementia
对自主活动进行数字监测以检测行为变异型额颞叶痴呆的同理心丧失
- 批准号:
10722938 - 财政年份:2023
- 资助金额:
$ 72.77万 - 项目类别:
Environmental Exposures & Sleep in the Nurses' Health Study 3
环境暴露
- 批准号:
10677271 - 财政年份:2023
- 资助金额:
$ 72.77万 - 项目类别: