Multi-site longitudinal Integrated Neurocognitive and Sleep-Behavior Profiler for the Endophenotypic Classification of Dementia Subtypes (INSPECDS)
用于痴呆亚型内表型分类的多部位纵向综合神经认知和睡眠行为分析仪 (INSPECDS)
基本信息
- 批准号:10603714
- 负责人:
- 金额:$ 99.99万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-09-30 至 2025-05-31
- 项目状态:未结题
- 来源:
- 关键词:AccelerometerAddressAlgorithmsAlzheimer&aposs DiseaseArchitectureAutomatic Data ProcessingBehavior assessmentBiological MarkersBrainCause of DeathCharacteristicsClassificationClinical ResearchClinical TrialsClinical Trials Cooperative GroupConsultDataData AnalysesData SetDementiaDementia with Lewy BodiesDevicesDiagnosisDisease ProgressionDrug IndustryElectrocardiogramElectroencephalographyElectrophysiology (science)Frontotemporal DementiaGoalsHead MovementsHealth PersonnelHomeImpaired cognitionIndividualInfrastructureKnowledgeMachine LearningMalignant NeoplasmsMeasuresMemoryMonitorNeurocognitiveNeurodegenerative DisordersNeurologicNeuropsychological TestsParkinson&aposs DementiaPatientsPerformancePharmacologic SubstancePhaseProbabilityProcessREM Sleep Behavior DisorderReportingResearchResearch PersonnelSecureSiteSleepSleep ArchitectureSmall Business Innovation Research GrantStatistical ModelsStratificationStudy SubjectSystemTechniquesTechnologyTechnology AssessmentTestingTimeTrainingUniversitiesVisitalertnessbasebrain behaviorclassification algorithmclinical diagnosticscloud basedcognitive functioncohortcommercial applicationcommercializationcomputerizeddata acquisitiondata repositorydiagnostic accuracydrug discoveryhuman subjectimprovedlarge datasetslimb movementmachine learning classificationmild cognitive impairmentneurocognitive testnoveloutreachrelating to nervous systemretention ratescale upsleep behaviorsynucleinopathytoolwireless
项目摘要
It is estimated that Alzheimer’s and other neurodegenerative diseases causing dementia will
surpass cancer as the second leading cause of death by the year 2040. Alzheimer’s disease (AD) is the
leading cause of dementia, followed by synucleinopathies, including dementia with Lewy bodies (DLB),
Parkinson’s disease with dementia (PDD), and Fronto-temporal dementia. There is an urgent, unmet
need for effective tools to aid in the classification of dementia subtypes, in the earliest detectable stages
of the pathophysiological process. To address this, Advanced Brain Monitoring (ABM) is leveraging
day/night assessment technologies to create the Integrated Neurocognitive and Sleep-Behavior Profiler
for the Endophenotypic Classification of Dementia Subtypes (INSPECDS) to profile Alzheimer’s and other
dementias. The components of the platform are the Alertness and Memory Profiler (AMP), the Sleep
Profiler (SP), and integrated machine-learning, classification algorithms, hosted on a secure cloud-based,
infrastructure for automated data processing, analysis, & reporting. AMP is unique among
neurocognitive testing platforms in that it is the only one that integrates advanced electrophysiological
measures (e.g., 24-channel wireless EEG/ECG) during the performance of computerized neurocognitive
tasks and has proven effective in characterizing cognitive decline in Alzheimer’s disease. This capability
permits researchers to explore real-time relations between fluctuations in alertness, discrete cognitive
functions, and specific neural processes believed to subserve observed performance deficits in
Alzheimer’s disease and other dementias. The SP is FDA-cleared, easily applied, wireless-EEG device that
was developed and validated to measure sleep architecture for in-home sleep studies with submental
EMG and wireless accelerometers to monitor head and limb movements to quantify the characteristics
of REM-sleep behavior disorder, considered to be a prodromal expression of synucleinopathy. The
application of machine-learning, classification algorithms streamlines the processing and analyses of
these data to derive statistical probabilities of Alzheimer’s disease and other dementia subtypes. The
overarching goal of the current submission is to finalize implementation of a secure, cloud-based
infrastructure to compile the data obtained from the AMP and SP, train classification algorithms to
discriminate among Alzheimer’s disease and other dementia subtypes, validate diagnostic accuracy, and
integrate optimized classifiers within the cloud-based architecture. The INSPECDS system is the first
clinical research tool of its kind with application in both university-based research settings and
pharmaceutical clinical trials to aid in the endophenotypic stratification of Alzheimer’s disease and other
dementias.
据估计,阿尔茨海默氏症和其他神经退行性疾病会导致痴呆症
到2040年,超越癌症是死亡的第二大死亡原因。阿尔茨海默氏病(AD)是
痴呆症的主要原因,其次是突触性疾病,包括Lewy身体(DLB)的痴呆症,
帕金森氏病(PDD)和额叶痴呆症。有一个紧急,未安装的
需要有效的工具以帮助最早可检测到的痴呆症亚型分类
病理生理过程。为了解决这个问题,高级大脑监测(ABM)正在利用
日/夜评估技术以创建综合的神经认知和睡眠行为分析师
为了对痴呆症亚型(INSECD)的内型型分类,以介绍阿尔茨海默氏症和其他人
痴呆症。平台的组成部分是警觉性和记忆分析器(AMP),睡眠
Profiler(SP)和集成的机器学习,分类算法,该算法托管在一个基于安全的云上,
自动数据处理,分析和报告的基础架构。放大器在
神经认知测试平台是唯一整合高级电生理学的平台
在计算机化神经认知过程中,措施(例如24通道无线EEG/ECG)
任务并已证明有效地表征了阿尔茨海默氏病的认知能力下降。这个功能
允许研究人员探索机敏,离散认知的波动之间的实时关系
功能以及被认为可以观察到的性能的特定神经过程定义
阿尔茨海默氏病和其他痴呆症。 SP是FDA清除的,易于应用的,无线EEG的设备
已开发和验证以测量次室内睡眠研究的睡眠体系结构
EMG和无线加速度计监测头和肢体运动以量化特征
REM睡眠行为障碍,被认为是突触核酸的前驱表达。这
机器学习,分类算法的应用简化了处理和分析
这些数据可导致阿尔茨海默氏病和其他痴呆症亚型的统计可能性。
当前提交的总体目标是最终确定基于云的安全的实现
基础架构来编译从AMP和SP,火车分类算法获得的数据
区分阿尔茨海默氏病和其他痴呆症亚型,验证诊断准确性和
基于云的体系结构中的集成优化分类器。 Inspecds系统是第一个
同类的临床研究工具,都在基于大学的研究环境和
药物临床试验,以帮助阿尔茨海默氏病和其他
痴呆症。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Chris Berka其他文献
Chris Berka的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Chris Berka', 18)}}的其他基金
CANNABIS IMPAIRMENT DETECTION APPLICATION (CIDA) (T163). SBIR PHASE II. POP: 9/20/2019-9/19/2021. N44DA-19-1218.
大麻损害检测申请(CIDA)(T163)。
- 批准号:
10044153 - 财政年份:2019
- 资助金额:
$ 99.99万 - 项目类别:
Characterizing Alzheimer's Disease with INSPECDS: Integrated Neurocognitive and Sleep-Behavior Profiler for the Endophenotypic Classification of Dementia Subtypes
使用 INSPECDS 表征阿尔茨海默病:用于痴呆亚型内表型分类的综合神经认知和睡眠行为分析仪
- 批准号:
9345457 - 财政年份:2017
- 资助金额:
$ 99.99万 - 项目类别:
Integrated Neurocognitive and Sleep-Behavior Profiler for the Endophenotypic Classification of Dementia Subtypes (INSPECDS)
用于痴呆亚型内表型分类的综合神经认知和睡眠行为分析仪 (INSPECDS)
- 批准号:
9360534 - 财政年份:2016
- 资助金额:
$ 99.99万 - 项目类别:
Integrated Neurocognitive and Sleep-Behavior Profiler for the Endophenotypic Classification of Dementia Subtypes (INSPECDS)
用于痴呆亚型内表型分类的综合神经认知和睡眠行为分析仪 (INSPECDS)
- 批准号:
9046620 - 财政年份:2016
- 资助金额:
$ 99.99万 - 项目类别:
Multi-site longitudinal Integrated Neurocognitive and Sleep-Behavior Profiler for the Endophenotypic Classification of Dementia Subtypes (INSPECDS)
用于痴呆亚型内表型分类的多部位纵向综合神经认知和睡眠行为分析仪 (INSPECDS)
- 批准号:
10707195 - 财政年份:2016
- 资助金额:
$ 99.99万 - 项目类别:
OTHER FUNCTIONS: QUANTIFICATION OF BEHAVIORAL AND PHYSIOLOGICAL EFFECTS OF DRUGS
其他功能:药物行为和生理影响的量化
- 批准号:
8563859 - 财政年份:2012
- 资助金额:
$ 99.99万 - 项目类别:
A Novel Approach to Assessing Cognitive State During Real-World Tasks
评估现实世界任务中认知状态的新方法
- 批准号:
8934148 - 财政年份:2011
- 资助金额:
$ 99.99万 - 项目类别:
A Novel Approach to Assessing Cognitive State During Real-World Tasks
评估现实世界任务中认知状态的新方法
- 批准号:
8847048 - 财政年份:2011
- 资助金额:
$ 99.99万 - 项目类别:
TAS::75 0893::TAS QUANTIFICATION OF BEHAVIORAL & PHYSIOLOGICAL EFFECTS OF DRUGS
TAS::75 0893::TAS 行为量化
- 批准号:
8338939 - 财政年份:2011
- 资助金额:
$ 99.99万 - 项目类别:
The Neurocognitive Profile: A High Efficiency Integrated Brain-Behavior Assay
神经认知概况:高效的大脑行为综合分析
- 批准号:
7272213 - 财政年份:2007
- 资助金额:
$ 99.99万 - 项目类别:
相似国自然基金
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Move and Snooze: Adding insomnia treatment to an exercise program to improve pain outcomes in older adults with knee osteoarthritis
活动和小睡:在锻炼计划中添加失眠治疗,以改善患有膝骨关节炎的老年人的疼痛结果
- 批准号:
10797056 - 财政年份:2023
- 资助金额:
$ 99.99万 - 项目类别:
Development of the OpiAID strength band platform
OpiAID 力量带平台的开发
- 批准号:
10684399 - 财政年份:2023
- 资助金额:
$ 99.99万 - 项目类别:
Training of machine learning algorithms for the classification of accelerometer-measured bednet use and related behaviors associated with malaria risk
训练机器学习算法,用于对加速计测量的蚊帐使用和与疟疾风险相关的相关行为进行分类
- 批准号:
10727374 - 财政年份:2023
- 资助金额:
$ 99.99万 - 项目类别:
Ultra Wideband Fall Detection and Prediction Solution for People Living with Dementia
针对痴呆症患者的超宽带跌倒检测和预测解决方案
- 批准号:
10760690 - 财政年份:2023
- 资助金额:
$ 99.99万 - 项目类别:
Development of an all-in-one soft wearable device for accurate lung function detection and asthma diagnosis
开发一款用于精确肺功能检测和哮喘诊断的一体式软可穿戴设备
- 批准号:
10726175 - 财政年份:2023
- 资助金额:
$ 99.99万 - 项目类别: