Engineering Multicellular Tissue Structure, Function, and Vascularization
工程多细胞组织结构、功能和血管化
基本信息
- 批准号:9305084
- 负责人:
- 金额:$ 74.26万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2009
- 资助国家:美国
- 起止时间:2009-06-15 至 2019-06-30
- 项目状态:已结题
- 来源:
- 关键词:3-DimensionalAcuteAddressAnimal ModelAnimalsArchitectureArtificial LiverBiocompatible MaterialsBiological ModelsBloodBlood VesselsCartilageCell CommunicationCell physiologyCellsCommunicationCommunitiesComplexDependenceDevelopmentDiseaseEndothelial CellsEngineeringEngraftmentGoalsHepatectomyHepatic TissueHepatocyteHomoHumanHuman EngineeringHydrogelsHypoxiaImplantIn VitroLifeLiverLiver FailureLiver RegenerationMediatingMetabolicMethodsNatural regenerationNutrientOrganOrgan TransplantationOxygenParacrine CommunicationPatientsPatternPerfusionPeritonealPhysiologicalPlayPopulationPositioning AttributeProcessRegenerative MedicineRegenerative responseRegulationResearch PersonnelRoleSignal TransductionSkinSolidSourceStimulusStreamStromal CellsStructureTechnologyTestingTissue EngineeringTissue SurvivalTissuesTransplantationTyrosinemiasVascular Endothelial CellVascular blood supplyVascularizationVisionbioprintingcell typechronic liver diseasedefined contributionengineering designimplantationimprovedimproved functioningin vivoliver developmentliver injurymouse modelnetwork architecturenovelparacrinepublic health relevanceregenerativeresponseshear stresssuccesstool
项目摘要
DESCRIPTION: The goal of this project is to define multicellular interactions in engineered hepatic tissue that will enable its engraftment and expansion in a living host. In vivo, cell-to-cel communication and cooperation mediated through juxtacrine and paracrine signals is a hallmark of multicellular life, and is thought to play a critical role in the establishment of native tissue
functions. Specifically in liver, such interactions appear to be critical for tissue function and regeneration. Unfortunately, few tools currently exist to manipulate multicellular spatial organization; thus little is known about the true impact of tissue architecture to tissue function.
During the past 4 years of this collaborative project, the investigators have shown that biomaterials can be used to support the transplantation and peritoneal engraftment of human engineered artificial livers composed of randomly- organized human hepatocytes, endothelial cells and stromal cells. Then, by using novel microtechnology tools to control the organization of these cell types within a 3D context, the team has shown that architecture impacts both the differentiated state of the hepatocyte and the function of the transplanted graft. In addition, the
investigators have developed bioprinting tools to build vascular networks in these 3D hydrogels and demonstrated that these improve the survival of co-embedded hepatocytes as well as methods to prevacularize hepatic tissues and thereby accelerate the peritoneal engraftment. In these model systems, we observe that there is a reciprocal interaction via paracrine signals- that is endothelial cells impact hepatocyte function and conversely that hepatocytes impact the endothelial network. Interestingly, many of the paracrine signals are interrelated with perfusion of the network as they are regulated either by shear stress, hypoxia or both. In the current application, the investigators seek to define the spatial dependence on paracrine signaling and perfusion within engineered livers that would efficiently allow them to engraft and expand upon stimulation. The specific aims of this competitive renewal are: (1) To define the role of 3D positioning on paracrine signaling between hepatocytes and endothelial cells in vitro and in vivo, (2) To understand the role of network perfusion on cell function in 3D constructs in vitro and in vivo, and (3) To assess the functional role of network architecture and perfusion on graft expansion in vivo. This project will lead to an integrated understanding of the role of multicellulr organization and cell-cell communication in stabilizing hepatic tissue vascularization and function, and provide new tools and strategies to the broader community to engineer complex multicellular tissues.
产品说明:该项目的目标是定义工程化肝组织中的多细胞相互作用,使其能够在活体宿主中植入和扩增。在体内,细胞与细胞之间的通讯和合作是通过多分泌和旁分泌信号介导的,是多细胞生命的标志,并且被认为在天然组织的建立中起关键作用
功能协调发展的特别是在肝脏中,这种相互作用似乎对组织功能和再生至关重要。不幸的是,目前很少有工具来操纵多细胞空间组织,因此很少有人知道组织结构对组织功能的真正影响。
在该合作项目的过去4年中,研究人员已经表明,生物材料可用于支持由随机组织的人肝细胞、内皮细胞和基质细胞组成的人类工程化人工肝的移植和腹膜植入。然后,通过使用新的微技术工具来控制这些细胞类型在3D环境中的组织,该团队已经证明,结构会影响肝细胞的分化状态和移植移植物的功能。此外该
研究人员已经开发了生物打印工具来在这些3D水凝胶中构建血管网络,并证明这些工具改善了共包埋肝细胞的存活,以及使肝组织预血管化并由此加速腹膜植入的方法。在这些模型系统中,我们观察到通过旁分泌信号存在相互作用-即内皮细胞影响肝细胞功能,反之,肝细胞影响内皮网络。有趣的是,许多旁分泌信号与网络的灌注相关,因为它们受到剪切应力、缺氧或两者的调节。在当前的应用中,研究人员试图定义工程肝脏内对旁分泌信号传导和灌注的空间依赖性,这将有效地允许它们在刺激时移植和扩张。这种竞争性更新的具体目的是:(1)确定体外和体内肝细胞和内皮细胞之间的旁分泌信号传导的3D定位的作用,(2)了解体外和体内3D构建体中网络灌注对细胞功能的作用,以及(3)评估网络结构和灌注对体内移植物扩增的功能作用。该项目将导致对多细胞组织和细胞间通讯在稳定肝组织血管化和功能中的作用的综合理解,并为更广泛的社区提供新的工具和策略来设计复杂的多细胞组织。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
SANGEETA N. BHATIA其他文献
SANGEETA N. BHATIA的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('SANGEETA N. BHATIA', 18)}}的其他基金
Synthetic vascularization and regeneration in engineered tissues
工程组织中的合成血管化和再生
- 批准号:
10566387 - 财政年份:2023
- 资助金额:
$ 74.26万 - 项目类别:
Infection-homing nanosystems as antibacterial therapeutics-delivery platforms
作为抗菌治疗传递平台的感染归巢纳米系统
- 批准号:
10205961 - 财政年份:2017
- 资助金额:
$ 74.26万 - 项目类别:
Modeling human hepatotropic infections in complex tissue organoids
在复杂组织类器官中模拟人类嗜肝感染
- 批准号:
7935261 - 财政年份:2009
- 资助金额:
$ 74.26万 - 项目类别:
Modeling human hepatotropic infections in complex tissue organoids
在复杂组织类器官中模拟人类嗜肝感染
- 批准号:
8322073 - 财政年份:2009
- 资助金额:
$ 74.26万 - 项目类别:
Engineering Multicellular Tissue Structure, Function and Vascularization
工程多细胞组织结构、功能和血管化
- 批准号:
8048145 - 财政年份:2009
- 资助金额:
$ 74.26万 - 项目类别:
Engineering Multicellular Tissue Structure, Function, and Vascularization
工程多细胞组织结构、功能和血管化
- 批准号:
9120857 - 财政年份:2009
- 资助金额:
$ 74.26万 - 项目类别:
Engineering Multicellular Tissue Structure, Function and Vascularization
工程多细胞组织结构、功能和血管化
- 批准号:
8242801 - 财政年份:2009
- 资助金额:
$ 74.26万 - 项目类别:
Modeling human hepatotropic infections in complex tissue organoids
在复杂组织类器官中模拟人类嗜肝感染
- 批准号:
7764021 - 财政年份:2009
- 资助金额:
$ 74.26万 - 项目类别:
Engineering Multicellular Tissue Structure, Function and Vascularization
工程多细胞组织结构、功能和血管化
- 批准号:
7871327 - 财政年份:2009
- 资助金额:
$ 74.26万 - 项目类别:
Engineering Multicellular Tissue Structure, Function and Vascularization
工程多细胞组织结构、功能和血管化
- 批准号:
7626617 - 财政年份:2009
- 资助金额:
$ 74.26万 - 项目类别:
相似海外基金
Transcriptional assessment of haematopoietic differentiation to risk-stratify acute lymphoblastic leukaemia
造血分化的转录评估对急性淋巴细胞白血病的风险分层
- 批准号:
MR/Y009568/1 - 财政年份:2024
- 资助金额:
$ 74.26万 - 项目类别:
Fellowship
Combining two unique AI platforms for the discovery of novel genetic therapeutic targets & preclinical validation of synthetic biomolecules to treat Acute myeloid leukaemia (AML).
结合两个独特的人工智能平台来发现新的基因治疗靶点
- 批准号:
10090332 - 财政年份:2024
- 资助金额:
$ 74.26万 - 项目类别:
Collaborative R&D
Acute senescence: a novel host defence counteracting typhoidal Salmonella
急性衰老:对抗伤寒沙门氏菌的新型宿主防御
- 批准号:
MR/X02329X/1 - 财政年份:2024
- 资助金额:
$ 74.26万 - 项目类别:
Fellowship
Cellular Neuroinflammation in Acute Brain Injury
急性脑损伤中的细胞神经炎症
- 批准号:
MR/X021882/1 - 财政年份:2024
- 资助金额:
$ 74.26万 - 项目类别:
Research Grant
STTR Phase I: Non-invasive focused ultrasound treatment to modulate the immune system for acute and chronic kidney rejection
STTR 第一期:非侵入性聚焦超声治疗调节免疫系统以治疗急性和慢性肾排斥
- 批准号:
2312694 - 财政年份:2024
- 资助金额:
$ 74.26万 - 项目类别:
Standard Grant
Combining Mechanistic Modelling with Machine Learning for Diagnosis of Acute Respiratory Distress Syndrome
机械建模与机器学习相结合诊断急性呼吸窘迫综合征
- 批准号:
EP/Y003527/1 - 财政年份:2024
- 资助金额:
$ 74.26万 - 项目类别:
Research Grant
FITEAML: Functional Interrogation of Transposable Elements in Acute Myeloid Leukaemia
FITEAML:急性髓系白血病转座元件的功能研究
- 批准号:
EP/Y030338/1 - 财政年份:2024
- 资助金额:
$ 74.26万 - 项目类别:
Research Grant
KAT2A PROTACs targetting the differentiation of blasts and leukemic stem cells for the treatment of Acute Myeloid Leukaemia
KAT2A PROTAC 靶向原始细胞和白血病干细胞的分化,用于治疗急性髓系白血病
- 批准号:
MR/X029557/1 - 财政年份:2024
- 资助金额:
$ 74.26万 - 项目类别:
Research Grant
ロボット支援肝切除術は真に低侵襲なのか?acute phaseに着目して
机器人辅助肝切除术真的是微创吗?
- 批准号:
24K19395 - 财政年份:2024
- 资助金额:
$ 74.26万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Acute human gingivitis systems biology
人类急性牙龈炎系统生物学
- 批准号:
484000 - 财政年份:2023
- 资助金额:
$ 74.26万 - 项目类别:
Operating Grants