Engineering Multicellular Tissue Structure, Function and Vascularization
工程多细胞组织结构、功能和血管化
基本信息
- 批准号:7871327
- 负责人:
- 金额:$ 70.03万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2009
- 资助国家:美国
- 起止时间:2009-06-15 至 2013-03-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAffectAnimalsArchitectureAutomobile DrivingBedsBlood VesselsCadherinsCapillary Endothelial CellCartilageCase StudyCell CommunicationCell physiologyCellsCellular StructuresComplexDevelopmentDevicesDiseaseEndothelial CellsEngineeringFibroblastsGeneric DrugsGoalsGrowthHepatocyteHomoHydrogelsImplantIn VitroLeadLifeLiverMaintenanceMediatingMethodsModelingMusOrganOrgan TransplantationParacrine CommunicationPatientsPatternPerformancePharmacologic SubstancePhysiologicalPlayResearchResearch PersonnelRoleSignal TransductionSkinStromal CellsStructureStructure-Activity RelationshipSurfaceSystemTestingTimeTissue EngineeringTissuesTransplantationVascular blood supplyVascularizationWorkangiogenesiscell growthcell typechorioallantoic membranedesignhuman tissueimplantationin vivointercellular communicationliver functionmeetingsmembrane modelmigrationnanoparticlenon-invasive monitornovelnovel strategiesparacrinepublic health relevancesuccesstooltwo-dimensional
项目摘要
DESCRIPTION (provided by applicant):
This project focuses on how the spatial organization of cells and resultant cell-cell interactions regulate the development and maintenance of stable tissue function within a tissue engineered construct. In vivo, cell-to cell communication and cooperation mediated through juxtacrine and paracrine signals is a hallmark of multicellular life, and is thought to play a critical role in the establishment of native tissue functions. Because the spatial organization of cells within tissues defines which juxtapositions exist between which cell types, this architecture ultimately can determine whether a tissue engineered construct ultimate will fail or succeed. Unfortunately, few tools currently exist to manipulate multicellular spatial organization; thus little is known about the true impact of tissue architecture to tissue function. The long-term goal of this project is to develop such cellular patterning tools, to use them to investigate the role of multicellular organization in regulating tissue function, and to explore how such organization can be used to enhance the function of engineered tissues. While the tools to be developed can be considered generic, the investigators will focus as a case study on the development of a vascularized engineered liver. The investigators have recently developed several multicellular patterning tools, and used them to demonstrate the importance of both hepatocyte-stromal cell interactions in supporting hepatocyte function, and interactions between parenchymal and vascular compartments in driving angiogenesis. Interestingly, there appear to be relevant pair wise interactions that occur between several cell types in this setting, and involve a combination of soluble paracrine signals and direct effects through cadherin engagement. It is apparent from these early studies that careful mechanistic studies are necessary to deconvolute and understand how these multiple interactions will contribute to the vascularization and differentiated function of the liver construct, so that a rational strategy can be developed to ultimately construct a functional tissue. It is proposed that a multifaceted in vitro and in vivo effort will be required to develop the necessary tools and studies to meet these goals. Specific Aim 1 will be to investigate the role of cell-cell interactions between hepatocytes, fibroblasts, and endothelial cells in regulating liver and angiogenic functions using several novel two-dimensional patterning tools. Specific Aim 2 will be to investigate how the organization of cells in three-dimensional constructs affects tissue function. Specific Aim 3 will be to explore the involvement of multicellular organization in regulating tissue integration and vascularization in an in vivo setting. In addition to novel approaches to generate patterned multi-cell type constructs, the investigators will also develop nanoparticles for non-invasive monitoring of tissue vascularization. This project will lead to an integrated understanding of the role of multicellular organization and cell-cell communication in stabilizing tissue function, and provide new tools and strategies to engineer complex multicellular tissues.
Public Health Relevance Statement: This project will develop tools to organize multiple cell types within an engineered liver construct to maximize tissue function and integration with the patient's blood supply. As such, these studies will address several major hurdles towards the engineering of tissues for treating diseases that are otherwise only cured by whole organ transplantation.
DESCRIPTION (provided by applicant):
This project focuses on how the spatial organization of cells and resultant cell-cell interactions regulate the development and maintenance of stable tissue function within a tissue engineered construct. In vivo, cell-to cell communication and cooperation mediated through juxtacrine and paracrine signals is a hallmark of multicellular life, and is thought to play a critical role in the establishment of native tissue functions. Because the spatial organization of cells within tissues defines which juxtapositions exist between which cell types, this architecture ultimately can determine whether a tissue engineered construct ultimate will fail or succeed. Unfortunately, few tools currently exist to manipulate multicellular spatial organization; thus little is known about the true impact of tissue architecture to tissue function. The long-term goal of this project is to develop such cellular patterning tools, to use them to investigate the role of multicellular organization in regulating tissue function, and to explore how such organization can be used to enhance the function of engineered tissues. While the tools to be developed can be considered generic, the investigators will focus as a case study on the development of a vascularized engineered liver. The investigators have recently developed several multicellular patterning tools, and used them to demonstrate the importance of both hepatocyte-stromal cell interactions in supporting hepatocyte function, and interactions between parenchymal and vascular compartments in driving angiogenesis. Interestingly, there appear to be relevant pair wise interactions that occur between several cell types in this setting, and involve a combination of soluble paracrine signals and direct effects through cadherin engagement. It is apparent from these early studies that careful mechanistic studies are necessary to deconvolute and understand how these multiple interactions will contribute to the vascularization and differentiated function of the liver construct, so that a rational strategy can be developed to ultimately construct a functional tissue. It is proposed that a multifaceted in vitro and in vivo effort will be required to develop the necessary tools and studies to meet these goals. Specific Aim 1 will be to investigate the role of cell-cell interactions between hepatocytes, fibroblasts, and endothelial cells in regulating liver and angiogenic functions using several novel two-dimensional patterning tools. Specific Aim 2 will be to investigate how the organization of cells in three-dimensional constructs affects tissue function. Specific Aim 3 will be to explore the involvement of multicellular organization in regulating tissue integration and vascularization in an in vivo setting. In addition to novel approaches to generate patterned multi-cell type constructs, the investigators will also develop nanoparticles for non-invasive monitoring of tissue vascularization. This project will lead to an integrated understanding of the role of multicellular organization and cell-cell communication in stabilizing tissue function, and provide new tools and strategies to engineer complex multicellular tissues.
Public Health Relevance Statement: This project will develop tools to organize multiple cell types within an engineered liver construct to maximize tissue function and integration with the patient's blood supply. As such, these studies will address several major hurdles towards the engineering of tissues for treating diseases that are otherwise only cured by whole organ transplantation.
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
SANGEETA N. BHATIA其他文献
SANGEETA N. BHATIA的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('SANGEETA N. BHATIA', 18)}}的其他基金
Synthetic vascularization and regeneration in engineered tissues
工程组织中的合成血管化和再生
- 批准号:
10566387 - 财政年份:2023
- 资助金额:
$ 70.03万 - 项目类别:
Infection-homing nanosystems as antibacterial therapeutics-delivery platforms
作为抗菌治疗传递平台的感染归巢纳米系统
- 批准号:
10205961 - 财政年份:2017
- 资助金额:
$ 70.03万 - 项目类别:
Modeling human hepatotropic infections in complex tissue organoids
在复杂组织类器官中模拟人类嗜肝感染
- 批准号:
7935261 - 财政年份:2009
- 资助金额:
$ 70.03万 - 项目类别:
Modeling human hepatotropic infections in complex tissue organoids
在复杂组织类器官中模拟人类嗜肝感染
- 批准号:
8322073 - 财政年份:2009
- 资助金额:
$ 70.03万 - 项目类别:
Engineering Multicellular Tissue Structure, Function and Vascularization
工程多细胞组织结构、功能和血管化
- 批准号:
8048145 - 财政年份:2009
- 资助金额:
$ 70.03万 - 项目类别:
Engineering Multicellular Tissue Structure, Function, and Vascularization
工程多细胞组织结构、功能和血管化
- 批准号:
9120857 - 财政年份:2009
- 资助金额:
$ 70.03万 - 项目类别:
Engineering Multicellular Tissue Structure, Function, and Vascularization
工程多细胞组织结构、功能和血管化
- 批准号:
9305084 - 财政年份:2009
- 资助金额:
$ 70.03万 - 项目类别:
Modeling human hepatotropic infections in complex tissue organoids
在复杂组织类器官中模拟人类嗜肝感染
- 批准号:
7764021 - 财政年份:2009
- 资助金额:
$ 70.03万 - 项目类别:
Engineering Multicellular Tissue Structure, Function and Vascularization
工程多细胞组织结构、功能和血管化
- 批准号:
8242801 - 财政年份:2009
- 资助金额:
$ 70.03万 - 项目类别:
Engineering Multicellular Tissue Structure, Function and Vascularization
工程多细胞组织结构、功能和血管化
- 批准号:
7626617 - 财政年份:2009
- 资助金额:
$ 70.03万 - 项目类别:
相似海外基金
How Does Particle Material Properties Insoluble and Partially Soluble Affect Sensory Perception Of Fat based Products
不溶性和部分可溶的颗粒材料特性如何影响脂肪基产品的感官知觉
- 批准号:
BB/Z514391/1 - 财政年份:2024
- 资助金额:
$ 70.03万 - 项目类别:
Training Grant
BRC-BIO: Establishing Astrangia poculata as a study system to understand how multi-partner symbiotic interactions affect pathogen response in cnidarians
BRC-BIO:建立 Astrangia poculata 作为研究系统,以了解多伙伴共生相互作用如何影响刺胞动物的病原体反应
- 批准号:
2312555 - 财政年份:2024
- 资助金额:
$ 70.03万 - 项目类别:
Standard Grant
RII Track-4:NSF: From the Ground Up to the Air Above Coastal Dunes: How Groundwater and Evaporation Affect the Mechanism of Wind Erosion
RII Track-4:NSF:从地面到沿海沙丘上方的空气:地下水和蒸发如何影响风蚀机制
- 批准号:
2327346 - 财政年份:2024
- 资助金额:
$ 70.03万 - 项目类别:
Standard Grant
Graduating in Austerity: Do Welfare Cuts Affect the Career Path of University Students?
紧缩毕业:福利削减会影响大学生的职业道路吗?
- 批准号:
ES/Z502595/1 - 财政年份:2024
- 资助金额:
$ 70.03万 - 项目类别:
Fellowship
感性個人差指標 Affect-X の構築とビスポークAIサービスの基盤確立
建立个人敏感度指数 Affect-X 并为定制人工智能服务奠定基础
- 批准号:
23K24936 - 财政年份:2024
- 资助金额:
$ 70.03万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Insecure lives and the policy disconnect: How multiple insecurities affect Levelling Up and what joined-up policy can do to help
不安全的生活和政策脱节:多种不安全因素如何影响升级以及联合政策可以提供哪些帮助
- 批准号:
ES/Z000149/1 - 财政年份:2024
- 资助金额:
$ 70.03万 - 项目类别:
Research Grant
How does metal binding affect the function of proteins targeted by a devastating pathogen of cereal crops?
金属结合如何影响谷类作物毁灭性病原体靶向的蛋白质的功能?
- 批准号:
2901648 - 财政年份:2024
- 资助金额:
$ 70.03万 - 项目类别:
Studentship
Investigating how double-negative T cells affect anti-leukemic and GvHD-inducing activities of conventional T cells
研究双阴性 T 细胞如何影响传统 T 细胞的抗白血病和 GvHD 诱导活性
- 批准号:
488039 - 财政年份:2023
- 资助金额:
$ 70.03万 - 项目类别:
Operating Grants
New Tendencies of French Film Theory: Representation, Body, Affect
法国电影理论新动向:再现、身体、情感
- 批准号:
23K00129 - 财政年份:2023
- 资助金额:
$ 70.03万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
The Protruding Void: Mystical Affect in Samuel Beckett's Prose
突出的虚空:塞缪尔·贝克特散文中的神秘影响
- 批准号:
2883985 - 财政年份:2023
- 资助金额:
$ 70.03万 - 项目类别:
Studentship