Exploring PSMA Biology in Tumor neovasculature
探索肿瘤新生血管中的 PSMA 生物学
基本信息
- 批准号:9380403
- 负责人:
- 金额:$ 63.19万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-06-06 至 2022-05-31
- 项目状态:已结题
- 来源:
- 关键词:Angiogenesis InhibitorsArchitectureBiologicalBiologyBiomedical EngineeringBlood group antigen SCarboxypeptidaseCell Culture SystemCellsCoculture TechniquesContrast MediaDataDevelopmentDevicesDrug TargetingEndothelial CellsEvaluationFDA approvedFOLH1 geneFibroblastsImageryImpairmentImplantIn VitroInjectableInstitutesKnockout MiceLasersLeadMalignant NeoplasmsMalignant neoplasm of prostateMembrane ProteinsMesenchymalMethodsMicrofluidic MicrochipsMicrofluidicsMissionMolecular ProfilingMonitorMusNeoplasm MetastasisNeoplasms in Vascular TissueOutcome StudyPathway interactionsPatientsPericytesPlayProstatePublic HealthResearchResistanceResolutionRoleScanningSideSolid NeoplasmSystemTestingTimeTumor AngiogenesisTumor BiologyTumor MarkersUnited States National Institutes of HealthVascularizationangiogenesisbioimagingcancer imagingcancer therapyexpectationexperimental studyfolic acid supplementationimaging modalityimplantationimprovedin vivoin vivo imaginginhibitor/antagonistinnovationinnovative technologiesinsightintravital microscopymatrigelmonocytemultidisciplinaryneoplastic cellneovascularizationneovasculaturenovelnovel therapeuticsoverexpressionphotoacoustic imagingprototypespatiotemporaltargeted agenttherapeutic targettherapy developmenttooltumortumor growthtumor microenvironment
项目摘要
Abstract: Since angiogenesis is one of the hallmarks of cancer, antiangiogenic therapies have been explored
as a strategy for cancer therapy. Unfortunately, with current therapies, half of the patients do not respond at all,
and only every third patient gains a survival benefit. New insights into the biology of tumor neovasculature are
therefore urgently needed to improve antiangiogenic therapy. We apply a multidisciplinary bioengineering
approach to explore a new promising target for antiangiogenic therapy. By integrating novel tools for in vitro
evaluations and in vivo imaging, we are able to gain unprecedented insight into the biological role of prostate-
specific membrane antigen (PSMA) in tumor vessels. The expression of PSMA in tumor neovasculature was
already described 19 years ago, yet still little is known about its biological role. We hypothesize that PSMA
plays an essential role in angiogenesis of tumor vessels and is therefore a potentially promising therapeutic
target. [Our preliminary data has shown that active, angiogenic endothelial cells as well as pericytes expressed high
levels of PSMA] and that inhibition of PSMA's enzymatic activity severely impaired the formation of new vessels.
Here, we are pairing our new biological insight with innovative technologies to further explore the role of PSMA
in tumor neovasculature toward a new antiangiogenetic therapy.
To examine the biological role of PSMA in tumor vessels, we will utilize significant bioengineering
advancements that will allow us to make direct observations that were previously not possible: (i) A novel cell
culturing system for the visualization of PSMA expression over time in EC [and co-cultured other cells such as
pericytes; (ii) A prototype microfluidic system to grow a fully vascularized tumor on a chip, allowing us to directly
observe the role of PSMA in tumor vascularization; and (iii) A prototype high-resolution optoacoustic scanner to
globally interrogate the vasculature and molecular signatures (such as PSMA) in a developing tumor in vivo.
Using these tools, developed by a unique consortium of distinctive experts, we will obtain valuable insights into
tumor angiogenesis that were not previously possible. Ultimately, we will explore PSMA inhibition as a
promising antiangiogenic therapy. We propose to test our hypothesis with three specific aims: In Aim 1, we will
explore the role of PSMA in angiogenesis with a new culture method and the microfluidic chip system. We will
assess the interplay of PSMA with other markers of angiogenesis and evaluate PSMA inhibition to impair
angiogenesis. In Aim 2, we will use the new optoacoustic scanner to explore the role of PSMA in a living,
developing tumor. In Aim 3, we will explore the inhibition of PSMA as a novel anti-angiogenetic therapy and
monitor tumor development with optoacoustic imaging. Ultimately, this proposal will lead not only to a deeper
understanding of PSMA biology but also to a new anti-angiogenetic therapy approach for cancer. [We will also
have established novel methods to study tumor vasculature and the tumor microenvironment in a unique way.]
摘要:由于血管生成是癌症的标志之一,因此已经探索了抗血管生成疗法
作为癌症治疗的策略。不幸的是,由于目前的疗法,一半的患者根本没有反应
只有每三分之一的患者获得生存益处。对肿瘤新生血管生物学的新见解是
因此,迫切需要改善抗血管生成疗法。我们应用多学科生物工程
探索抗血管生成疗法的新目标的方法。通过整合用于体外的新工具
评估和体内成像,我们能够对前列腺的生物学作用进行前所未有的见解
肿瘤血管中的特定膜抗原(PSMA)。 PSMA在肿瘤新生血管中的表达为
已经描述了19年前,但对其生物学作用知之甚少。我们假设PSMA
在肿瘤血管的血管生成中起着至关重要的作用,因此是一种潜在的治疗方法
目标。 [我们的初步数据表明,活性的,血管生成的内皮细胞和周细胞表达高
PSMA的水平和抑制PSMA酶促活性严重损害了新血管的形成。
在这里,我们将新的生物学见解与创新技术搭配,以进一步探索PSMA的作用
在肿瘤新生血管中朝向新的抗血管发生疗法。
为了检查PSMA在肿瘤血管中的生物学作用,我们将利用重要的生物工程
将使我们能够进行以前无法实现的直接观察的进步:(i)一个新颖的细胞
培养系统,以可视化PSMA在EC中随着时间的流逝(以及共同培养的其他细胞)
周细胞; (ii)原型的微流体系统,可在芯片上生长完全血管化的肿瘤,使我们直接
观察PSMA在肿瘤血管中的作用; (iii)原型高分辨率光声扫描仪
在体内发育中的肿瘤中,全球询问脉管系统和分子特征(例如PSMA)。
使用这些工具,是由独特专家共同开发的,我们将获得宝贵的见解
肿瘤血管生成以前是不可能的。最终,我们将探索PSMA抑制作用
有希望的抗血管生成疗法。我们建议以三个具体目标检验我们的假设:在AIM 1中,我们将
通过一种新的培养方法和微流体芯片系统探索PSMA在血管生成中的作用。我们将
评估PSMA与其他血管生成标记的相互作用,并评估PSMA抑制以损害
血管生成。在AIM 2中,我们将使用新的光声扫描仪来探索PSMA在生活中的作用,
发展肿瘤。在AIM 3中,我们将探索对PSMA作为一种新型抗血管生成疗法的抑制作用
通过光声成像监测肿瘤的发展。最终,该提议不仅会导致更深层次
了解PSMA生物学,也了解一种新的癌症抗血管生成疗法。 [我们也会
已经建立了以独特的方式研究肿瘤脉管系统和肿瘤微环境的新方法。]
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jan Grimm其他文献
Jan Grimm的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jan Grimm', 18)}}的其他基金
Cerenkov 2.0 – Cerenkov-activated agents for imaging and therapy
Cerenkov 2.0 — 用于成像和治疗的 Cerenkov 激活剂
- 批准号:
10644155 - 财政年份:2022
- 资助金额:
$ 63.19万 - 项目类别:
Exploiting ferroportin for cancer imaging and therapy
利用铁转运蛋白进行癌症成像和治疗
- 批准号:
10170300 - 财政年份:2017
- 资助金额:
$ 63.19万 - 项目类别:
Smart and self-reporting clinical nano carriers for drug delivery
用于药物输送的智能和自我报告的临床纳米载体
- 批准号:
9302146 - 财政年份:2017
- 资助金额:
$ 63.19万 - 项目类别:
Cerenkov-emission based nanosensors to detect biologic activities in vivo
基于切伦科夫发射的纳米传感器检测体内生物活性
- 批准号:
8788930 - 财政年份:2012
- 资助金额:
$ 63.19万 - 项目类别:
Cerenkov-emission based nanosensors to detect biologic activities in vivo
基于切伦科夫发射的纳米传感器检测体内生物活性
- 批准号:
8441561 - 财政年份:2012
- 资助金额:
$ 63.19万 - 项目类别:
Cerenkov-emission based nanosensors to detect biologic activities in vivo
基于切伦科夫发射的纳米传感器检测体内生物活性
- 批准号:
8276113 - 财政年份:2012
- 资助金额:
$ 63.19万 - 项目类别:
Cerenkov-emission based nanosensors to detect biologic activities in vivo
基于切伦科夫发射的纳米传感器检测体内生物活性
- 批准号:
8607183 - 财政年份:2012
- 资助金额:
$ 63.19万 - 项目类别:
相似国自然基金
“共享建筑学”的时空要素及表达体系研究
- 批准号:
- 批准年份:2019
- 资助金额:63 万元
- 项目类别:面上项目
基于城市空间日常效率的普通建筑更新设计策略研究
- 批准号:51778419
- 批准年份:2017
- 资助金额:61.0 万元
- 项目类别:面上项目
宜居环境的整体建筑学研究
- 批准号:51278108
- 批准年份:2012
- 资助金额:68.0 万元
- 项目类别:面上项目
The formation and evolution of planetary systems in dense star clusters
- 批准号:11043007
- 批准年份:2010
- 资助金额:10.0 万元
- 项目类别:专项基金项目
新型钒氧化物纳米组装结构在智能节能领域的应用
- 批准号:20801051
- 批准年份:2008
- 资助金额:18.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Abnormal HIF signaling in Down syndrome-related pulmonary hypertension
唐氏综合症相关肺动脉高压中的 HIF 信号异常
- 批准号:
10698118 - 财政年份:2022
- 资助金额:
$ 63.19万 - 项目类别:
Prospective evaluation of outcomes in cirrhosis of different etiologies: impact of HIV infection and simvastatin therapy
不同病因肝硬化结局的前瞻性评估:HIV 感染和辛伐他汀治疗的影响
- 批准号:
10700112 - 财政年份:2021
- 资助金额:
$ 63.19万 - 项目类别:
Protein Interactions and Conformational Changes in Fibronectin Fibril Formation
纤连蛋白原纤维形成中的蛋白质相互作用和构象变化
- 批准号:
9134853 - 财政年份:2015
- 资助金额:
$ 63.19万 - 项目类别:
Centrosomes and Cytoskeletal Mechanisms of Blood Vessel Dysfunction
血管功能障碍的中心体和细胞骨架机制
- 批准号:
8891096 - 财政年份:2015
- 资助金额:
$ 63.19万 - 项目类别:
Identification of genetic predictors of bevacizumab induced hypertension
贝伐珠单抗诱发高血压的遗传预测因子的鉴定
- 批准号:
8978933 - 财政年份:2015
- 资助金额:
$ 63.19万 - 项目类别: