Regulation of Fuel Utilization by Lysine Acetylation in the Failing Heart
赖氨酸乙酰化对衰竭心脏中燃料利用的调节
基本信息
- 批准号:9324419
- 负责人:
- 金额:$ 46.94万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-09-01 至 2017-08-31
- 项目状态:已结题
- 来源:
- 关键词:Acetyl Coenzyme AAcetylationAcetyltransferaseAddressAffectAreaBiochemicalBioenergeticsBiologyCarbohydratesCardiacCardiac MyocytesCell Culture TechniquesCellsCessation of lifeClinicalCoronary ArteriosclerosisCouplingDataDefectDevelopmentDiabetes MellitusDietEnzymesFatty AcidsFatty acid glycerol estersFutureGeneticGlucoseHeartHeart failureHumanIn VitroKnockout MiceKnowledgeLeadLife StyleLinkLiteratureLysineMediatingMedicalMetabolic ControlMitochondriaMitochondrial ProteinsModelingModificationMusMyocardial dysfunctionMyocardiumObesityOperative Surgical ProceduresOutcomeOutputPathway interactionsPositioning AttributePost-Translational Protein ProcessingProcessProteomicsRegulationRisk FactorsSeriesSocietiesSolidStagingStarvationSystemTechniquesTestingTherapeutic InterventionUnited Statesabstractingbasedetection of nutrientenzyme activityfatty acid oxidationimprovedimproved outcomein vitro Modelin vivoinsightmeetingsmetabolomicsmitochondrial dysfunctionmouse modelnew therapeutic targetnovelnovel therapeuticsoxidationpreferencepreventresearch studytool
项目摘要
Abstract
Heart failure affects six million people in the United States, and is listed as a causative factor in more than 10%
of deaths. The development of heart failure is linked to several risk factors (including coronary artery disease,
obesity and diabetes), which are increasingly prevalent in Western societies due to diet and other lifestyle
choices. While clinical outcomes have improved over the last three decades, there remain gaps in our
knowledge surrounding the cellular mechanisms that regulate cardiac function. One such gap, and the
scientific focus of this application, is the regulation of fuel substrate utilization by mitochondria in the heart.
Mitochondria provide 95% of the energy required by healthy hearts to maintain contractility, and defects in
mitochondrial bioenergetic activity lead to cardiac energy starvation and heart failure. Mitochondria in the heart
normally provide this energy through the oxidation of fatty acids; however, during heart failure they switch to
other fuels like glucose. While changes in cardiac substrate preference in heart failure have been well
characterized, we do not fully understand the cellular mechanisms that regulate this process. Our data, and the
current literature, show that mitochondrial function is regulated by lysine acetylation, a post-translational
modification that uses fuel-derived acetyl-CoA as a substrate. We recently identified GCN5L1 as the first
component of the mitochondrial acetyltransferase machinery, and showed that GCN5L1-mediated acetylation
controls mitochondrial bioenergetics in vitro. The objective of this proposal is to understand how GCN5L1
acetylation impacts mitochondrial bioenergetics in the heart, and to investigate how dysregulated energy
substrate utilization can lead to mitochondrial dysfunction, cardiac energy depletion and heart failure. We will
achieve this objective by addressing the following questions: (1) How does GCN5L1 control fatty acid oxidation
in normal and failing hearts? (2) What acetyl modifications regulate mitochondrial fuel utilization enzymes
during early- and late-stage heart failure? (3) How does GCN5L1 regulate cardiac mitochondrial turnover under
normal and energy-depleted states? To answer these questions, we will use a series of in vivo murine heart
failure models and in vitro cell culture studies, combined with metabolomic, proteomic and biochemical
techniques, to examine the biology of GCN5L1. We expect that this series of experiments will provide
important new insights on mitochondrial energy substrate regulation, and will highlight GCN5L1 as a crucial
component in the control of metabolic fuel choice, bioenergetics and mitochondrial turnover in the heart.
摘要
心力衰竭影响着美国600万人,并且被列为超过10%的致病因素。
死亡心力衰竭的发生与几个风险因素有关(包括冠状动脉疾病,
肥胖和糖尿病),由于饮食和其他生活方式,这些疾病在西方社会越来越普遍
选择.虽然临床结果在过去三十年中有所改善,但我们的研究仍存在差距。
了解调节心脏功能的细胞机制。一个这样的差距,
该应用的科学焦点是心脏中线粒体对燃料底物利用的调节。
线粒体提供了健康心脏维持收缩力所需能量的95%,而线粒体缺陷则导致心脏收缩力下降。
线粒体生物能量活动导致心脏能量饥饿和心力衰竭。心脏中的线粒体
通常通过脂肪酸的氧化提供这种能量;然而,在心力衰竭期间,它们会转换为
其他燃料如葡萄糖。虽然心力衰竭中心脏底物偏好的变化已经很好地
由于这些特征,我们还不完全了解调节这一过程的细胞机制。我们的数据,
目前的文献表明,线粒体功能是由赖氨酸乙酰化,翻译后
使用燃料衍生的乙酰辅酶A作为底物的修饰。我们最近发现GCN 5L 1是第一个
线粒体乙酰转移酶机制的组成部分,并表明GCN 5L 1介导的乙酰化
控制体外线粒体生物能量学。本提案的目的是了解GCN 5L 1
乙酰化影响心脏中的线粒体生物能量学,并研究能量失调如何影响心脏中的线粒体生物能量学。
底物利用可导致线粒体功能障碍、心脏能量消耗和心力衰竭。我们将
通过解决以下问题实现这一目标:(1)GCN 5L 1如何控制脂肪酸氧化
在正常和衰竭的心脏中(2)什么乙酰基修饰调节线粒体燃料利用酶
在心力衰竭早期和晚期?(3)GCN 5L 1如何调节心肌线粒体周转
正常状态和能量耗尽状态为了回答这些问题,我们将使用一系列体内小鼠心脏,
失败模型和体外细胞培养研究,结合代谢组学、蛋白质组学和生物化学
技术,以检查GCN 5L 1的生物学。我们希望这一系列的实验将提供
重要的线粒体能量底物调控的新见解,并将突出GCN 5L 1作为一个关键的
在控制代谢燃料的选择,生物能量学和线粒体在心脏的周转组成。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Iain Scott其他文献
Iain Scott的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Iain Scott', 18)}}的其他基金
Fatty acid oxidation in female cardioprotection
脂肪酸氧化对女性心脏的保护作用
- 批准号:
10534771 - 财政年份:2021
- 资助金额:
$ 46.94万 - 项目类别:
Fatty acid oxidation in female cardioprotection
脂肪酸氧化对女性心脏的保护作用
- 批准号:
10362454 - 财政年份:2021
- 资助金额:
$ 46.94万 - 项目类别:
Novel strategies to resolve metabolic defects in the diabetic heart
解决糖尿病心脏代谢缺陷的新策略
- 批准号:
10371877 - 财政年份:2020
- 资助金额:
$ 46.94万 - 项目类别:
Novel strategies to resolve metabolic defects in the diabetic heart
解决糖尿病心脏代谢缺陷的新策略
- 批准号:
10592286 - 财政年份:2020
- 资助金额:
$ 46.94万 - 项目类别:
Regulation of Fuel Utilization by Lysine Acetylation in the Failing Heart
赖氨酸乙酰化对衰竭心脏中燃料利用的调节
- 批准号:
9767853 - 财政年份:2017
- 资助金额:
$ 46.94万 - 项目类别:
Regulation of Fuel Utilization by Lysine Acetylation in the Failing Heart
赖氨酸乙酰化对衰竭心脏中燃料利用的调节
- 批准号:
9309898 - 财政年份:2017
- 资助金额:
$ 46.94万 - 项目类别:
Regulation of Fuel Utilization by Lysine Acetylation in the Failing Heart
赖氨酸乙酰化对衰竭心脏中燃料利用的调节
- 批准号:
9982397 - 财政年份:2017
- 资助金额:
$ 46.94万 - 项目类别:
Regulation of mitochondrial function by a novel lysine acetyltransferase
新型赖氨酸乙酰转移酶对线粒体功能的调节
- 批准号:
8424515 - 财政年份:2014
- 资助金额:
$ 46.94万 - 项目类别:
相似海外基金
Investigating the functions of histone acetylation in genome organization and leukemogenesis
研究组蛋白乙酰化在基因组组织和白血病发生中的功能
- 批准号:
EP/Y000331/1 - 财政年份:2023
- 资助金额:
$ 46.94万 - 项目类别:
Research Grant
Gene Modulation of Acetylation Modifiers to Reveal Regulatory Links to Human Cardiac Electromechanics
乙酰化修饰剂的基因调节揭示与人类心脏机电的调节联系
- 批准号:
10677295 - 财政年份:2023
- 资助金额:
$ 46.94万 - 项目类别:
Novel roles of PDK2 in heart failure: Regulation of mitochondrial nuclear crosstalk via metabolic regulation and histone acetylation
PDK2 在心力衰竭中的新作用:通过代谢调节和组蛋白乙酰化调节线粒体核串扰
- 批准号:
10635599 - 财政年份:2023
- 资助金额:
$ 46.94万 - 项目类别:
Regulation of hepatic lysine N-acetylation by cysteine proximity due to alcohol toxicity
酒精毒性导致的半胱氨酸接近对肝脏赖氨酸 N-乙酰化的调节
- 批准号:
10752320 - 财政年份:2023
- 资助金额:
$ 46.94万 - 项目类别:
Histone Acetylation Regulates Microglial Innate Immune Memory
组蛋白乙酰化调节小胶质细胞先天免疫记忆
- 批准号:
478927 - 财政年份:2023
- 资助金额:
$ 46.94万 - 项目类别:
Operating Grants
Dysregulation of Histone Acetylation in Parkinson's Disease
帕金森病中组蛋白乙酰化的失调
- 批准号:
10855703 - 财政年份:2023
- 资助金额:
$ 46.94万 - 项目类别:
Obesity-related hypertension: the contribution of PPAR gamma acetylation and asprosin
肥胖相关高血压:PPAR γ 乙酰化和白脂素的贡献
- 批准号:
10654210 - 财政年份:2023
- 资助金额:
$ 46.94万 - 项目类别:
The role N-terminal acetylation in dilated cardiomyopathy and associated arrhythmia
N-末端乙酰化在扩张型心肌病和相关心律失常中的作用
- 批准号:
10733915 - 财政年份:2023
- 资助金额:
$ 46.94万 - 项目类别:
In vivo tracing of hepatic ethanol metabolism to histone acetylation: role of ACSS2 in alcohol-induced liver injury
肝脏乙醇代谢与组蛋白乙酰化的体内追踪:ACSS2 在酒精性肝损伤中的作用
- 批准号:
10667952 - 财政年份:2023
- 资助金额:
$ 46.94万 - 项目类别:
The function of TWIST1 acetylation in cell fate and tissue development
TWIST1 乙酰化在细胞命运和组织发育中的作用
- 批准号:
10726986 - 财政年份:2023
- 资助金额:
$ 46.94万 - 项目类别:














{{item.name}}会员




