Implantable biofunctional hydrogel for muscle stem cell transplantation
用于肌肉干细胞移植的可植入生物功能水凝胶
基本信息
- 批准号:9375058
- 负责人:
- 金额:$ 20.6万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-07-15 至 2019-06-30
- 项目状态:已结题
- 来源:
- 关键词:AddressAdhesionsAdhesivesBasic ScienceBiochemicalBiocompatible MaterialsBiomimeticsBolus InfusionCell SurvivalCell TherapyCell TransplantationCell TransplantsCell physiologyCellsCellular biologyCharacteristicsClinicCollagenDataDefectDuchenne muscular dystrophyDystroglycanElasticityEngineeringEngraftmentExhibitsExtracellular MatrixFibronectinsFoundationsFutureGelGoalsGrowth FactorHistologicHomeostasisHumanHydrogelsImaging technologyInflammationInjectableInjuryInterventionLamininLigandsLuciferasesMaleimidesMeasuresMetabolicMonitorMotor NeuronsMuscleMuscle FibersMuscle functionMuscle satellite cellMuscular AtrophyMyopathyNatural regenerationNeuromuscular JunctionOutcomePatientsPeptide HydrolasesPeptidesPeripheralPolyethylene GlycolsPopulationProliferatingPropertyRegenerative MedicineResearchSkeletal MuscleStem cellsSystemTechnologyTestingTimeTransgenic MiceTranslatingTransplantationTraumatic injuryUrineVascular Endothelial Growth FactorsVascularizationWorkbioluminescence imagingclinical efficacycontrolled releaseexperimental studyfunctional improvementimprovedin vivoin vivo imaginginnovationmalemouse modelmuscle physiologymuscle regenerationmuscle transplantationmyogenesisneuromuscularneurotrophic factornovelreceptor bindingreconstitutionregenerativerelease factorrepairedscaffoldself-renewalstem cell nichesynaptogenesissynthetic peptidesystemic toxicity
项目摘要
PROJECT SUMMARY
To maintain skeletal muscle homeostasis and to repair damaged muscle, a functional pool of muscle stem cell
(MuSC) undergoes asymmetric division in which committed progenies proliferate, differentiate, and fuse with
existing myofibers or form de novo myofibers, while other populations of MuSC progeny self-renew to replenish
the quiescent stem cell pool for future rounds of regeneration. Due to these unique properties, MuSC has been
an attractive target for interventions, and cell-based therapy has been extensively studied to treat a variety of
muscle wasting conditions. While direct transplantation of MuSC contributes to muscle regeneration to some
degree, the clinical efficacy of direct cell transplantation is severely limited by sub-optimal engraftment, survival,
and lack of functional benefits. To overcome these challenges, we engineered polyethylene glycol (PEG)-
Maleimide hydrogels functionalized with adhesion ligands found in the native MuSC niche. Excitingly, our
preliminary data show that MuSC delivered via biomimetic vehicle exhibit a significant improvement in
transplantation efficiency compared to cells only control. To build upon our exciting preliminary findings, this
proposal will test the working hypothesis that MuSC delivered within PEG-mal hydrogel functionalized to mimic
native niche will synergistically augment long-term stem cell engraftment, restore regenerative, metabolic, and
contractile function of dystrophic recipient muscle. As such, following specific aims will be investigated: Aim1 is
to evaluate engineered PEG-mal hydrogel for optimal delivery, survival, engraftment, and MuSC function in vivo.
Aim 2 examines whether co-delivery of MuSC and selected stem cell niche factors, VEGF and GDNF delivered
within the biofunctional hydrogel, synergistically boost transplant efficiency and muscle function. The outcomes
of this work serve as a vehicle for translating the basic sciences to the clinics, where the engineered biomaterial
will contribute to accelerating the repair for the muscle traumatic injury, as well as other degenerative muscle
diseases in human patients.
项目摘要
为了维持骨骼肌稳态并修复受损的肌肉,肌肉干细胞的功能池
(MUSC)经历不对称的分裂,其中承诺的后代扩散,分化和融合
现有的肌纤维或从头肌纤维形成,而其他MUSC后代自我更新的种群可以补充
静止的干细胞池,用于将来的再生一轮。由于这些独特的特性,MUSC一直是
对干预措施的有吸引力的目标,基于细胞的治疗已被广泛研究以治疗各种
肌肉浪费条件。 MUSC直接移植有助于肌肉再生
程度,直接细胞移植的临床疗效受到亚最佳植入,生存,
缺乏功能福利。为了克服这些挑战,我们设计了聚乙烯乙二醇(PEG) -
马来酰亚胺水凝胶用在天然MUSC生态裂中发现的粘附配体功能化。令人兴奋的是,我们的
初步数据表明,通过仿生型交付的MUSC在
与仅细胞对照相比,移植效率。为了建立我们令人兴奋的初步发现,
提案将检验以下假设,即在PEG-MAL水凝胶中递送至模拟的MUSC
本地利基市场将协同增强长期干细胞植入,恢复再生,代谢和
营养不良的受体肌肉的收缩功能。因此,将研究以下特定目标:AIM1是
评估工程化的PEG-MAL水凝胶以在体内最佳输送,生存,植入和MUSC功能。
AIM 2检查了MUSC和选定的干细胞生态位因子,VEGF和GDNF的共同传递是否已交付
在生物功能性水凝胶中,协同提高移植效率和肌肉功能。结果
这项工作是将基本科学转化为诊所的工具,该诊所是工程生物材料的
将有助于加速修复肌肉创伤性损伤以及其他退化性肌肉
人类患者的疾病。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Young Charles Jang其他文献
Young Charles Jang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Young Charles Jang', 18)}}的其他基金
3D micro-physiological systems for identification of therapeutic myokines
用于识别治疗性肌因子的 3D 微生理系统
- 批准号:
10595294 - 财政年份:2023
- 资助金额:
$ 20.6万 - 项目类别:
Engineered Heterochronic Parabiosis on 3D Microphysiological Systems
3D 微生理系统上的工程异时共生
- 批准号:
10207946 - 财政年份:2021
- 资助金额:
$ 20.6万 - 项目类别:
Engineered Heterochronic Parabiosis on 3D Microphysiological Systems
3D 微生理系统上的工程异时共生
- 批准号:
10380776 - 财政年份:2021
- 资助金额:
$ 20.6万 - 项目类别:
Engineered Heterochronic Parabiosis on 3D Microphysiological Systems
3D 微生理系统上的工程异时共生
- 批准号:
10663683 - 财政年份:2021
- 资助金额:
$ 20.6万 - 项目类别:
Engineered Heterochronic Parabiosis on 3D Microphysiological Systems
3D 微生理系统上的工程异时共生
- 批准号:
10544776 - 财政年份:2021
- 资助金额:
$ 20.6万 - 项目类别:
Replicating heterochronic parabiosis on a chip for testing anti-geronic factors
在芯片上复制异时联体共生以测试抗老年因子
- 批准号:
9914196 - 财政年份:2019
- 资助金额:
$ 20.6万 - 项目类别:
相似国自然基金
促细胞外囊泡分泌的绒毛膜纳米纤维仿生培养体系的构建及其在宫腔粘连修复中的应用研究
- 批准号:32301204
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
载Pexidartinib的纳米纤维膜通过阻断CSF-1/CSF-1R通路抑制巨噬细胞活性预防心脏术后粘连的研究
- 批准号:82370515
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
泛素连接酶SMURF2通过SMAD6-COL5A2轴调控宫腔粘连纤维化的分子机制研究
- 批准号:82360301
- 批准年份:2023
- 资助金额:31 万元
- 项目类别:地区科学基金项目
负载羟基喜树碱的双层静电纺纳米纤维膜抑制肌腱粘连组织增生的作用和相关机制研究
- 批准号:82302691
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
活血通腑方调控NETs干预术后腹腔粘连组织纤维化新途径研究
- 批准号:82374466
- 批准年份:2023
- 资助金额:48 万元
- 项目类别:面上项目
相似海外基金
Localized mitochondrial metabolic activity in Xenopus mesendoderm cells undergoing collective cell migration
爪蟾中内胚层细胞集体细胞迁移的局部线粒体代谢活性
- 批准号:
10751722 - 财政年份:2023
- 资助金额:
$ 20.6万 - 项目类别:
Translational Multimodal Strategy for Peri-Implant Disease Prevention
种植体周围疾病预防的转化多模式策略
- 批准号:
10736860 - 财政年份:2023
- 资助金额:
$ 20.6万 - 项目类别:
Light-propelled dental adhesives with enhanced bonding capability
具有增强粘合能力的光驱动牙科粘合剂
- 批准号:
10741660 - 财政年份:2023
- 资助金额:
$ 20.6万 - 项目类别:
Phosphatase-dependent regulation of desmosome intercellular junctions
桥粒细胞间连接的磷酸酶依赖性调节
- 批准号:
10677182 - 财政年份:2023
- 资助金额:
$ 20.6万 - 项目类别:
Bacterial Adhesion Inhibition and Biofilm Disruption by Adaptive Piezoelectric Biomaterial
自适应压电生物材料抑制细菌粘附和破坏生物膜
- 批准号:
10668030 - 财政年份:2023
- 资助金额:
$ 20.6万 - 项目类别: