Imaging cellular biomechanics on-chip in 2D and 3D microenvironments
2D 和 3D 微环境中的片上细胞生物力学成像
基本信息
- 批准号:9265091
- 负责人:
- 金额:$ 14.23万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2013
- 资助国家:美国
- 起止时间:2013-05-01 至 2018-04-30
- 项目状态:已结题
- 来源:
- 关键词:AcousticsActinsAnisotropyAreaAwardBehaviorBenchmarkingBiochemicalBiologicalBiomechanicsBiophysicsBreast Cancer CellCalibrationCell LineCell physiologyCellsCellular StructuresCellular biologyCollagenComplementComplex MixturesDataDetectionDevelopment PlansDimensionsElasticityEnvironmentEthicsExhibitsExtracellular MatrixFocal AdhesionsFrequenciesGene ExpressionGoalsHourHydrogelsImageLaboratoriesLightLiteratureMCF10A cellsMCF7 cellMDA MB 231Mammary glandMapsMeasurementMeasuresMechanical StimulationMechanicsMediatingMentorsMentorshipMetastatic breast cancerMethodsMicrofluidicsMicroscopyModelingModificationModulusMorphogenesisMorphologic artifactsNatureNeoplasm MetastasisOpticsPathway interactionsPhysicsPropertyReadingRegulationResearchResolutionRheologyRoleSamplingScienceSignal TransductionSpeedStimulusSystemTechniquesTechnologyTestingTimeTissuesTrainingValidationVariantangiogenesisbasebiological researchcancer cellcareer developmentcell behaviorcell motilitycellular imagingexperiencefield studyimaging modalityimprovedin vivoinstrumentlaboratory experiencelight scatteringmechanical forcemechanotransductionmedical schoolsmigrationnoveloptical imagingphotonicsphysical sciencepolyacrylamide gelsprogramspublic health relevancereconstitutionresponsetechnology developmentthree dimensional cell culturetooltransmission process
项目摘要
DESCRIPTION (provided by applicant): This project features the integration of advanced photonic technology and microfluidics to attack a major unmet challenge in cell biomechanics. The cellular microenvironment critically regulates cellular function by providing a complex mixture of biochemical and biophysical stimuli. Among the components of the cell-microenvironment interaction, the role of biomechanical factors is recognized to be crucial. In recent years, tremendous progress has been achieved in developing single-cell tools for mechanical stimulation and force response. One area of needed improvement is the non-invasive measurement of intracellular elasticity. Elasticity mediates the transmission of forces inside the cell and the deformation experienced by cell regions under an applied force. However, current technology for cell/ECM elasticity measurements is limited to point-sample analysis or requires contact. These are important limitations since cells are heterogeneous, alter their properties upon mechanical perturbation, and need to be studied in 3D microenvironments. This project will develop an all-optical approach to this unmet need. Brillouin cellular microscopy
can map the intracellular elasticity at high resolution, non-perturbatively, without contact in 3D cultures. Brillouin information on cell elasticity will be co-located with fluorescent-based detection of cytoskeletal components and intracellular mechanotransduction. Integration with microfluidic platforms will enable tight control of microenvironment conditions. After instrument validation, I will focus on breast cancer cell migration. Based on preliminary data and literature evidence, I formulated and will test the hypothesis that intracellular elasticity mediates migratio, namely that optimal cell modulus and elasticity polarization are mechanical requirements of the migration machinery and can be used to explain the enhanced motility exhibited by metastatic cells compared to their non-cancerous counterparts. Beyond the cell migration studies, the novel instrumental platform developed and validated during this award, will be broadly applicable as it provides unique quantitative metrics to relate cell- microenvironment mechanical interaction to cell behavior. This K25 award would enable the candidate's transition to research in cellular biomechanics and mechanobiology by complementing his demonstrated expertise in optical technology development with the necessary training in cell biology, microfluidics and ethical research conduct through formal coursework, interaction with mentors and hands-on laboratory training.
项目描述(申请人提供):本项目将先进的光子技术和微流体技术相结合,以解决细胞生物力学中尚未解决的重大挑战。细胞微环境通过提供复杂的生物化学和生物物理刺激来调节细胞功能。在细胞-微环境相互作用的组成部分中,生物力学因素的作用被认为是至关重要的。近年来,在开发用于机械刺激和力响应的单细胞工具方面取得了巨大进展。一个需要改进的领域是细胞内弹性的非侵入性测量。弹性调节细胞内力的传递和细胞区域在外力作用下的变形。然而,目前的电池/ECM弹性测量技术仅限于点样分析或需要接触。这些都是重要的限制,因为细胞是异质的,在机械扰动下会改变它们的性质,并且需要在3D微环境中进行研究。该项目将开发一种全光学方法来满足这一未满足的需求。布里渊细胞显微镜
项目成果
期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Memory-effect based deconvolution microscopy for super-resolution imaging through scattering media.
- DOI:10.1038/srep33558
- 发表时间:2016-09-16
- 期刊:
- 影响因子:4.6
- 作者:Edrei E;Scarcelli G
- 通讯作者:Scarcelli G
Brillouin micro-spectroscopy through aberrations via sensorless adaptive optics.
- DOI:10.1063/1.5027838
- 发表时间:2018-04-16
- 期刊:
- 影响因子:4
- 作者:Edrei E;Scarcelli G
- 通讯作者:Scarcelli G
Mechanical outcome of accelerated corneal crosslinking evaluated by Brillouin microscopy.
- DOI:10.1016/j.jcrs.2017.07.037
- 发表时间:2017-11
- 期刊:
- 影响因子:2.8
- 作者:Webb JN;Su JP;Scarcelli G
- 通讯作者:Scarcelli G
Optical imaging through dynamic turbid media using the Fourier-domain shower-curtain effect.
- DOI:10.1364/optica.3.000071
- 发表时间:2016-01-20
- 期刊:
- 影响因子:10.4
- 作者:Edrei E;Scarcelli G
- 通讯作者:Scarcelli G
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Giuliano Scarcelli其他文献
Giuliano Scarcelli的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Giuliano Scarcelli', 18)}}的其他基金
Brillouin confocal microscopy for biomechanical studies of metastatic cascade in 3D microenvironments
用于 3D 微环境中转移级联生物力学研究的布里渊共焦显微镜
- 批准号:
9301503 - 财政年份:2016
- 资助金额:
$ 14.23万 - 项目类别:
Biomechanical understanding of accommodation mechanism with Brillouin microscopy
利用布里渊显微镜对调节机制的生物力学理解
- 批准号:
8664398 - 财政年份:2013
- 资助金额:
$ 14.23万 - 项目类别:
Imaging cellular biomechanics on-chip in 2D and 3D microenvironments
2D 和 3D 微环境中的片上细胞生物力学成像
- 批准号:
8509179 - 财政年份:2013
- 资助金额:
$ 14.23万 - 项目类别:
Biomechanical understanding of accommodation mechanism with Brillouin microscopy
利用布里渊显微镜对调节机制的生物力学理解
- 批准号:
8429549 - 财政年份:2013
- 资助金额:
$ 14.23万 - 项目类别:
Imaging cellular biomechanics on-chip in 2D and 3D microenvironments
2D 和 3D 微环境中的片上细胞生物力学成像
- 批准号:
9057538 - 财政年份:2013
- 资助金额:
$ 14.23万 - 项目类别:
Imaging cellular biomechanics on-chip in 2D and 3D microenvironments
2D 和 3D 微环境中的片上细胞生物力学成像
- 批准号:
8840585 - 财政年份:2013
- 资助金额:
$ 14.23万 - 项目类别:
Imaging cellular biomechanics on-chip in 2D and 3D microenvironments
2D 和 3D 微环境中的片上细胞生物力学成像
- 批准号:
8651437 - 财政年份:2013
- 资助金额:
$ 14.23万 - 项目类别:
Imaging cellular biomechanics on-chip in 2D and 3D microenvironments
2D 和 3D 微环境中的片上细胞生物力学成像
- 批准号:
8960179 - 财政年份:2013
- 资助金额:
$ 14.23万 - 项目类别:
相似海外基金
A novel motility system driven by two classes of bacterial actins MreB
由两类细菌肌动蛋白 MreB 驱动的新型运动系统
- 批准号:
22KJ2613 - 财政年份:2023
- 资助金额:
$ 14.23万 - 项目类别:
Grant-in-Aid for JSPS Fellows
The structural basis of plasmid segregation by bacterial actins
细菌肌动蛋白分离质粒的结构基础
- 批准号:
342887 - 财政年份:2016
- 资助金额:
$ 14.23万 - 项目类别:
Operating Grants
The structural basis for plasmid segregation by bacterial actins
细菌肌动蛋白分离质粒的结构基础
- 批准号:
278338 - 财政年份:2013
- 资助金额:
$ 14.23万 - 项目类别:
Operating Grants
Cytoplasmic Actins in Maintenance of Muscle Mitochondria
细胞质肌动蛋白在维持肌肉线粒体中的作用
- 批准号:
8505938 - 财政年份:2012
- 资助金额:
$ 14.23万 - 项目类别:
Differential Expression of the Diverse Plant Actins
多种植物肌动蛋白的差异表达
- 批准号:
7931495 - 财政年份:2009
- 资助金额:
$ 14.23万 - 项目类别:
Studies on how actins and microtubules are coordinated and its relevancy.
研究肌动蛋白和微管如何协调及其相关性。
- 批准号:
19390048 - 财政年份:2007
- 资助金额:
$ 14.23万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Interaction of myosin with monomeric actins
肌球蛋白与单体肌动蛋白的相互作用
- 批准号:
5311554 - 财政年份:2001
- 资助金额:
$ 14.23万 - 项目类别:
Priority Programmes
STRUCTURE/INTERACTIONS OF ACTINS AND ACTIN-BINDING PROTEIN
肌动蛋白和肌动蛋白结合蛋白的结构/相互作用
- 批准号:
6316669 - 财政年份:2000
- 资助金额:
$ 14.23万 - 项目类别: