Imaging cellular biomechanics on-chip in 2D and 3D microenvironments

2D 和 3D 微环境中的片上细胞生物力学成像

基本信息

  • 批准号:
    9057538
  • 负责人:
  • 金额:
    $ 14.23万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2013
  • 资助国家:
    美国
  • 起止时间:
    2013-05-01 至 2018-04-30
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): This project features the integration of advanced photonic technology and microfluidics to attack a major unmet challenge in cell biomechanics. The cellular microenvironment critically regulates cellular function by providing a complex mixture of biochemical and biophysical stimuli. Among the components of the cell-microenvironment interaction, the role of biomechanical factors is recognized to be crucial. In recent years, tremendous progress has been achieved in developing single-cell tools for mechanical stimulation and force response. One area of needed improvement is the non-invasive measurement of intracellular elasticity. Elasticity mediates the transmission of forces inside the cell and the deformation experienced by cell regions under an applied force. However, current technology for cell/ECM elasticity measurements is limited to point-sample analysis or requires contact. These are important limitations since cells are heterogeneous, alter their properties upon mechanical perturbation, and need to be studied in 3D microenvironments. This project will develop an all-optical approach to this unmet need. Brillouin cellular microscopy can map the intracellular elasticity at high resolution, non-perturbatively, without contact in 3D cultures. Brillouin information on cell elasticity will be co-located with fluorescent-based detection of cytoskeletal components and intracellular mechanotransduction. Integration with microfluidic platforms will enable tight control of microenvironment conditions. After instrument validation, I will focus on breast cancer cell migration. Based on preliminary data and literature evidence, I formulated and will test the hypothesis that intracellular elasticity mediates migratio, namely that optimal cell modulus and elasticity polarization are mechanical requirements of the migration machinery and can be used to explain the enhanced motility exhibited by metastatic cells compared to their non-cancerous counterparts. Beyond the cell migration studies, the novel instrumental platform developed and validated during this award, will be broadly applicable as it provides unique quantitative metrics to relate cell- microenvironment mechanical interaction to cell behavior. This K25 award would enable the candidate's transition to research in cellular biomechanics and mechanobiology by complementing his demonstrated expertise in optical technology development with the necessary training in cell biology, microfluidics and ethical research conduct through formal coursework, interaction with mentors and hands-on laboratory training.
描述(由申请者提供):该项目将先进的光子技术和微流体技术相结合,以解决细胞生物力学中尚未满足的主要挑战。细胞微环境通过提供生化和生物物理刺激的复杂混合物来关键地调节细胞功能。在细胞-微环境相互作用的组成部分中,生物力学因素的作用被认为是至关重要的。近年来,用于机械刺激和力响应的单细胞工具的开发取得了巨大的进步。需要改进的一个领域是细胞内弹性的非侵入性测量。弹性调节细胞内部的力的传递,以及细胞区域在外力作用下所经历的变形。然而,目前的细胞/细胞外基质弹性测量技术仅限于点样分析或需要接触。这些都是重要的限制,因为细胞是异质的,在机械扰动下会改变它们的性质,需要在三维微环境中进行研究。该项目将开发一种全光学方法来满足这一未得到满足的需求。布里渊细胞显微镜 可以在3D培养中以高分辨率、非微扰、无接触的方式绘制细胞内弹性图。关于细胞弹性的布里渊信息将与基于荧光的细胞骨架成分检测和细胞内机械转导共同定位。与微流控平台的集成将实现对微环境条件的严格控制。在仪器验证后,我将重点研究乳腺癌细胞的迁移。基于初步数据和文献证据,我提出并将检验细胞内弹性介导迁移的假设,即最佳细胞弹性系数和弹性极化是迁移机制的力学要求,可以用来解释转移细胞与非癌细胞相比表现出的增强的运动性。除了细胞迁移研究,在该奖项期间开发和验证的新型仪器平台将广泛适用,因为它提供了独特的量化指标,将细胞-微环境机械相互作用与细胞行为联系起来。这项K25奖项将使候选人能够过渡到细胞生物力学和机械生物学的研究,通过正规的课程作业、与导师的互动和动手实验室培训,补充他在光学技术开发方面所展示的专业知识,以及在细胞生物学、微流体学和伦理研究方面的必要培训。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Giuliano Scarcelli其他文献

Giuliano Scarcelli的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Giuliano Scarcelli', 18)}}的其他基金

Brillouin confocal microscopy for biomechanical studies of metastatic cascade in 3D microenvironments
用于 3D 微环境中转移级联生物力学研究的布里渊共焦显微镜
  • 批准号:
    9301503
  • 财政年份:
    2016
  • 资助金额:
    $ 14.23万
  • 项目类别:
Biomechanical understanding of accommodation mechanism with Brillouin microscopy
利用布里渊显微镜对调节机制的生物力学理解
  • 批准号:
    8664398
  • 财政年份:
    2013
  • 资助金额:
    $ 14.23万
  • 项目类别:
Imaging cellular biomechanics on-chip in 2D and 3D microenvironments
2D 和 3D 微环境中的片上细胞生物力学成像
  • 批准号:
    8509179
  • 财政年份:
    2013
  • 资助金额:
    $ 14.23万
  • 项目类别:
Biomechanical understanding of accommodation mechanism with Brillouin microscopy
利用布里渊显微镜对调节机制的生物力学理解
  • 批准号:
    8429549
  • 财政年份:
    2013
  • 资助金额:
    $ 14.23万
  • 项目类别:
Imaging cellular biomechanics on-chip in 2D and 3D microenvironments
2D 和 3D 微环境中的片上细胞生物力学成像
  • 批准号:
    8840585
  • 财政年份:
    2013
  • 资助金额:
    $ 14.23万
  • 项目类别:
Imaging cellular biomechanics on-chip in 2D and 3D microenvironments
2D 和 3D 微环境中的片上细胞生物力学成像
  • 批准号:
    8960179
  • 财政年份:
    2013
  • 资助金额:
    $ 14.23万
  • 项目类别:
Imaging cellular biomechanics on-chip in 2D and 3D microenvironments
2D 和 3D 微环境中的片上细胞生物力学成像
  • 批准号:
    8651437
  • 财政年份:
    2013
  • 资助金额:
    $ 14.23万
  • 项目类别:
Imaging cellular biomechanics on-chip in 2D and 3D microenvironments
2D 和 3D 微环境中的片上细胞生物力学成像
  • 批准号:
    9265091
  • 财政年份:
    2013
  • 资助金额:
    $ 14.23万
  • 项目类别:

相似海外基金

A novel motility system driven by two classes of bacterial actins MreB
由两类细菌肌动蛋白 MreB 驱动的新型运动系统
  • 批准号:
    22KJ2613
  • 财政年份:
    2023
  • 资助金额:
    $ 14.23万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
The structural basis of plasmid segregation by bacterial actins
细菌肌动蛋白分离质粒的结构基础
  • 批准号:
    342887
  • 财政年份:
    2016
  • 资助金额:
    $ 14.23万
  • 项目类别:
    Operating Grants
The structural basis for plasmid segregation by bacterial actins
细菌肌动蛋白分离质粒的结构基础
  • 批准号:
    278338
  • 财政年份:
    2013
  • 资助金额:
    $ 14.23万
  • 项目类别:
    Operating Grants
Cytoplasmic Actins in Maintenance of Muscle Mitochondria
细胞质肌动蛋白在维持肌肉线粒体中的作用
  • 批准号:
    8505938
  • 财政年份:
    2012
  • 资助金额:
    $ 14.23万
  • 项目类别:
Differential Expression of the Diverse Plant Actins
多种植物肌动蛋白的差异表达
  • 批准号:
    7931495
  • 财政年份:
    2009
  • 资助金额:
    $ 14.23万
  • 项目类别:
Studies on how actins and microtubules are coordinated and its relevancy.
研究肌动蛋白和微管如何协调及其相关性。
  • 批准号:
    19390048
  • 财政年份:
    2007
  • 资助金额:
    $ 14.23万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Suppression of Arabidopsis Reproductive Actins
拟南芥生殖肌动蛋白的抑制
  • 批准号:
    6655612
  • 财政年份:
    2003
  • 资助金额:
    $ 14.23万
  • 项目类别:
Suppression of Arabidopsis Reproductive Actins
拟南芥生殖肌动蛋白的抑制
  • 批准号:
    6546977
  • 财政年份:
    2003
  • 资助金额:
    $ 14.23万
  • 项目类别:
Interaction of myosin with monomeric actins
肌球蛋白与单体肌动蛋白的相互作用
  • 批准号:
    5311554
  • 财政年份:
    2001
  • 资助金额:
    $ 14.23万
  • 项目类别:
    Priority Programmes
STRUCTURE/INTERACTIONS OF ACTINS AND ACTIN-BINDING PROTEIN
肌动蛋白和肌动蛋白结合蛋白的结构/相互作用
  • 批准号:
    6316669
  • 财政年份:
    2000
  • 资助金额:
    $ 14.23万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了