BRAIN Initiative: Theories, Models and Methods for Analysis of Complex Data from the Brain
BRAIN Initiative:大脑复杂数据分析的理论、模型和方法
基本信息
- 批准号:9360100
- 负责人:
- 金额:$ 37.61万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-09-27 至 2019-06-30
- 项目状态:已结题
- 来源:
- 关键词:AddressAlgorithmsBRAIN initiativeBase of the BrainBrainBrain imagingBrain regionBypassCommunitiesComplexComputer softwareDataData AnalysesDatabasesDizygotic TwinsFunctional Magnetic Resonance ImagingFutureGeneticGenetic studyGoalsGraphHeritabilityHumanImageIndividualMagnetic Resonance ImagingMapsMeasuresMethodologyMethodsModelingPhenotypePopulationPropertyPsychopathologyResearch DesignResolutionSame-sexSamplingSoftware ToolsStructureTechniquesTestingTimeTwin Multiple BirthTwin Studiesbasecostimaging modalityimaging studyinterestmultimodalitynetwork modelsneural circuitnovel strategiesopen sourcetheories
项目摘要
Abstract
The twin study design in brain imaging offers a very effective way of determining heritability of the human
brain. The difference in variability between monozygotic (MZ) and same-sex dizygotic (DZ) twins can be used
in determining heritability. We propose to determine the extent of heritability of both structural and functional
brain networks at the voxel-level using 200 pairs of twin (400 individuals) of fMRI/DTI and MRI. To obtain high-
resolution heritability map of the brain networks, the project requires taking more than 25 thousands voxels for
fMRI and 1.2million voxels for MRI/DTI as network nodes, which is a serious computational challenge. The
project proposes many new algorithms for constructing large-scale brain networks and subsequently mapping
the heritability of the networks. This study will provide the brain imaging community with the baseline brain
network heritability maps as well as a versatile open-source toolbox of algorithms for modeling and visualizing
large-scale brain networks of three different imaging modalities.
摘要
脑成像中的双胞胎研究设计提供了一种非常有效的方法来确定人类的遗传性
个脑袋单卵双胞胎(MZ)和同性双卵双胞胎(DZ)之间的变异性差异可用于
来决定遗传性。我们建议确定结构和功能的遗传程度,
使用200对双胞胎(400个人)的fMRI/DTI和MRI在体素水平上的脑网络。为了获得高-
分辨率遗传地图的大脑网络,该项目需要采取超过25000体素,
fMRI和MRI/DTI的120万体素作为网络节点,这是一个严重的计算挑战。的
一个项目提出了许多新的算法来构建大规模的大脑网络,并随后映射
网络的可遗传性。这项研究将为大脑成像界提供基线大脑
网络遗传性图以及用于建模和可视化的多功能开源算法工具箱
三种不同成像模式的大规模大脑网络。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
MOO K CHUNG其他文献
MOO K CHUNG的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('MOO K CHUNG', 18)}}的其他基金
Dynamic embedding time series models in functional brain imaging
功能性脑成像中的动态嵌入时间序列模型
- 批准号:
10711521 - 财政年份:2023
- 资助金额:
$ 37.61万 - 项目类别:
Dynamic manifold-valued time series model in functional brain imaging
功能性脑成像中的动态流形值时间序列模型
- 批准号:
10374109 - 财政年份:2020
- 资助金额:
$ 37.61万 - 项目类别:
BRAIN Initiative: Theories, Models and Methods for Analysis of Complex Data from the Brain
BRAIN Initiative:大脑复杂数据分析的理论、模型和方法
- 批准号:
9170211 - 财政年份:2016
- 资助金额:
$ 37.61万 - 项目类别:
相似海外基金
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
$ 37.61万 - 项目类别:
Research Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
$ 37.61万 - 项目类别:
Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
- 批准号:
2338816 - 财政年份:2024
- 资助金额:
$ 37.61万 - 项目类别:
Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
$ 37.61万 - 项目类别:
Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
- 批准号:
2348261 - 财政年份:2024
- 资助金额:
$ 37.61万 - 项目类别:
Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
- 批准号:
2348346 - 财政年份:2024
- 资助金额:
$ 37.61万 - 项目类别:
Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
- 批准号:
2348457 - 财政年份:2024
- 资助金额:
$ 37.61万 - 项目类别:
Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
$ 37.61万 - 项目类别:
Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 37.61万 - 项目类别:
Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
- 批准号:
2339669 - 财政年份:2024
- 资助金额:
$ 37.61万 - 项目类别:
Continuing Grant














{{item.name}}会员




