BRAIN Initiative: Theories, Models and Methods for Analysis of Complex Data from the Brain
BRAIN Initiative:大脑复杂数据分析的理论、模型和方法
基本信息
- 批准号:9170211
- 负责人:
- 金额:$ 37.61万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-09-27 至 2019-06-30
- 项目状态:已结题
- 来源:
- 关键词:AddressAlgorithmsBRAIN initiativeBase of the BrainBrainBrain MappingBrain imagingBrain regionBypassChromosome MappingCommunitiesComplexComputer softwareDataDatabasesDizygotic TwinsFunctional Magnetic Resonance ImagingFutureGeneticGenetic studyGoalsGraphHeritabilityHumanImageIndividualMagnetic Resonance ImagingMapsMeasuresMethodsModelingPhenotypePopulationPropertyPsychopathologyResearch DesignResolutionSame-sexSamplingSoftware ToolsStructureTechniquesTestingTimeTwin Multiple BirthTwin StudiesWeightabstractingbasecostimaging geneticsimaging modalityinterestnetwork modelsneural circuitnovel strategiesopen sourcetheories
项目摘要
Abstract
The twin study design in brain imaging offers a very effective way of determining heritability of the human
brain. The difference in variability between monozygotic (MZ) and same-sex dizygotic (DZ) twins can be used
in determining heritability. We propose to determine the extent of heritability of both structural and functional
brain networks at the voxel-level using 200 pairs of twin (400 individuals) of fMRI/DTI and MRI. To obtain high-
resolution heritability map of the brain networks, the project requires taking more than 25 thousands voxels for
fMRI and 1.2million voxels for MRI/DTI as network nodes, which is a serious computational challenge. The
project proposes many new algorithms for constructing large-scale brain networks and subsequently mapping
the heritability of the networks. This study will provide the brain imaging community with the baseline brain
network heritability maps as well as a versatile open-source toolbox of algorithms for modeling and visualizing
large-scale brain networks of three different imaging modalities.
摘要
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
MOO K CHUNG其他文献
MOO K CHUNG的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('MOO K CHUNG', 18)}}的其他基金
Dynamic embedding time series models in functional brain imaging
功能性脑成像中的动态嵌入时间序列模型
- 批准号:
10711521 - 财政年份:2023
- 资助金额:
$ 37.61万 - 项目类别:
Dynamic manifold-valued time series model in functional brain imaging
功能性脑成像中的动态流形值时间序列模型
- 批准号:
10374109 - 财政年份:2020
- 资助金额:
$ 37.61万 - 项目类别:
BRAIN Initiative: Theories, Models and Methods for Analysis of Complex Data from the Brain
BRAIN Initiative:大脑复杂数据分析的理论、模型和方法
- 批准号:
9360100 - 财政年份:2016
- 资助金额:
$ 37.61万 - 项目类别:
相似海外基金
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
$ 37.61万 - 项目类别:
Research Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
$ 37.61万 - 项目类别:
Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
- 批准号:
2338816 - 财政年份:2024
- 资助金额:
$ 37.61万 - 项目类别:
Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
$ 37.61万 - 项目类别:
Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
- 批准号:
2348261 - 财政年份:2024
- 资助金额:
$ 37.61万 - 项目类别:
Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
- 批准号:
2348346 - 财政年份:2024
- 资助金额:
$ 37.61万 - 项目类别:
Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
- 批准号:
2348457 - 财政年份:2024
- 资助金额:
$ 37.61万 - 项目类别:
Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
$ 37.61万 - 项目类别:
Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 37.61万 - 项目类别:
Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
- 批准号:
2339669 - 财政年份:2024
- 资助金额:
$ 37.61万 - 项目类别:
Continuing Grant