Dynamic embedding time series models in functional brain imaging
功能性脑成像中的动态嵌入时间序列模型
基本信息
- 批准号:10711521
- 负责人:
- 金额:$ 36.41万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-07 至 2027-06-30
- 项目状态:未结题
- 来源:
- 关键词:AddressAlgorithmsAnatomic SurfaceAnatomyAtrophicBehaviorBrainBrain imagingBrain regionBypassChromosome MappingClinicalCognitionCognitiveCommunitiesComputer softwareDataData AnalysesData SetDatabasesDependenceDiffusion Magnetic Resonance ImagingDiscriminationFunctional Magnetic Resonance ImagingFutureGeneticGoalsHeritabilityHumanLaplacianMagnetic Resonance ImagingMapsMethodsModelingOutcomeParticipantPhenotypePopulationProceduresResearchResolutionRestSeriesShapesSignal TransductionSoftware ToolsStatistical MethodsStructureSurfaceTechniquesTimeTwin Multiple BirthVisualizationWorkbehavior predictioncognitive taskcomplex dataconnectomedata structuregenetic associationgeometric structurehuman subjectinterestmorphometrynetwork modelsneuroimagingnovelopen sourcetoolusabilityuser-friendly
项目摘要
Project Summary
We will develop new large-scale dynamic embedding models of network data with a focus on dynamic connec-
tivity matrices from non-stationary multivariate time series obtained from human functional magnetic resonance
images (fMRI). We propose to model brain networks as 2D curved surfaces, where the surface geodesics give
connectivity information. Our approach will bypass the use of parcellations and more accurately evaluate the
evolutionary dynamics of functional brain networks at the voxel level.
We propose to build dynamically changing functional brain networks from a dataset with 1206 subjects from
the Human Connectome Project (HCP) database containing T1-weighted magnetic resonance images (MRI),
diffusion MRI (dMRI) and task and resting-state functional MRI (fMRI). MRI and dMRI will be used in conjunction
with fMRI in building more refined dynamic connectivity models. Using 243 pairs of twins in the HCP database, we
will determine network phenotypes specific to behavior, cognition and their genetic associations. This study will
provide the research community with the brain network heritability maps and as well as a versatile open-source
toolbox of algorithms for modeling and visualizing dynamically changing large-scale brain networks.
项目摘要
我们将开发新的网络数据的大规模动态嵌入模型,重点是动态连接,
人体功能磁共振非平稳多变量时间序列的活性矩阵
功能磁共振成像(fMRI)。我们建议将大脑网络建模为2D曲面,其中表面测地线给出
连接信息。我们的方法将绕过包裹的使用,并更准确地评估
功能性大脑网络在体素水平上的进化动力学。
我们建议从1206名受试者的数据集构建动态变化的功能脑网络,
包含T1加权磁共振图像(MRI)的人类连接组计划(HCP)数据库,
弥散磁共振成像(dMRI)和任务和静息状态功能磁共振成像(fMRI)。MRI和dMRI将联合使用
功能磁共振成像在构建更精细的动态连接模型。使用HCP数据库中的243对双胞胎,我们
将决定特定于行为、认知及其遗传关联的网络表型。本研究将
为研究界提供大脑网络遗传地图,以及一个多功能的开源
用于建模和可视化动态变化的大规模大脑网络的算法工具箱。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Statistical inference for dependence networks in topological data analysis.
- DOI:10.3389/frai.2023.1293504
- 发表时间:2023
- 期刊:
- 影响因子:4
- 作者:El-Yaagoubi, Anass B.;Chung, Moo K.;Ombao, Hernando
- 通讯作者:Ombao, Hernando
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
MOO K CHUNG其他文献
MOO K CHUNG的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('MOO K CHUNG', 18)}}的其他基金
Dynamic manifold-valued time series model in functional brain imaging
功能性脑成像中的动态流形值时间序列模型
- 批准号:
10374109 - 财政年份:2020
- 资助金额:
$ 36.41万 - 项目类别:
BRAIN Initiative: Theories, Models and Methods for Analysis of Complex Data from the Brain
BRAIN Initiative:大脑复杂数据分析的理论、模型和方法
- 批准号:
9170211 - 财政年份:2016
- 资助金额:
$ 36.41万 - 项目类别:
BRAIN Initiative: Theories, Models and Methods for Analysis of Complex Data from the Brain
BRAIN Initiative:大脑复杂数据分析的理论、模型和方法
- 批准号:
9360100 - 财政年份:2016
- 资助金额:
$ 36.41万 - 项目类别:
相似海外基金
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
$ 36.41万 - 项目类别:
Research Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
$ 36.41万 - 项目类别:
Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
- 批准号:
2338816 - 财政年份:2024
- 资助金额:
$ 36.41万 - 项目类别:
Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
$ 36.41万 - 项目类别:
Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
- 批准号:
2348261 - 财政年份:2024
- 资助金额:
$ 36.41万 - 项目类别:
Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
- 批准号:
2348346 - 财政年份:2024
- 资助金额:
$ 36.41万 - 项目类别:
Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
- 批准号:
2348457 - 财政年份:2024
- 资助金额:
$ 36.41万 - 项目类别:
Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
$ 36.41万 - 项目类别:
Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 36.41万 - 项目类别:
Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
- 批准号:
2339669 - 财政年份:2024
- 资助金额:
$ 36.41万 - 项目类别:
Continuing Grant