Ribosome Dysfunction in Neurological Disorders
神经系统疾病中的核糖体功能障碍
基本信息
- 批准号:9271261
- 负责人:
- 金额:$ 31.14万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-03-01 至 2020-05-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAffectAgeAgingAmino AcidsArginineAtaxiaBacteriaBrainCell DeathCerebellar degenerationCessation of lifeCodon NucleotidesComplementComplexComputer SimulationComputing MethodologiesCritical PathwaysDataDefectDevelopmentDiseaseEconomic BurdenEventFailureFunctional disorderGTPBP1 geneGenesGeneticGenetic TranslationGenomicsGrowthGuanosine Triphosphate PhosphohydrolasesHereditary DiseaseHippocampus (Brain)HomeostasisHuman GeneticsLeadLocationMammalian CellMammalsMessenger RNAModelingMolecularMouse StrainsMusMutant Strains MiceMutationNerve DegenerationNeurodegenerative DisordersNeuronsOrganPathologyPathway interactionsPeptidesPhenotypePositioning AttributeProcessProtein BiosynthesisProteinsRecyclingRegulationResearchResolutionRibosomesSpecificitySpeedStructureSystemTP53 geneTerminator CodonTestingTransfer RNATransfer RNA AminoacylationTranslatingTranslation ProcessTranslationsUnited StatesWorkYeastsage effectagedaging brainaging populationexperimental studygenetic approachgenetic informationgranule cellhuman diseasemouse modelnervous system disorderneuron lossnovelparalogous genepublic health relevancerelease factorretinal neuronsimulationtranscriptome sequencingtransmission process
项目摘要
DESCRIPTION (provided by applicant): Neurodegenerative disorders affect many millions of people around the world, particularly in the aging population. The vast majority of these diseases are not familial and the mutations that have been associated with rare familial forms of these disorders underscore the complexity of this group of diseases. To begin to understand this complexity, we have used forward genetic approaches to pinpoint the molecular pathways that maintain neuronal homeostasis in the aging mammalian brain. Using this approach we recently demonstrated that unresolved ribosome stalling is a novel mechanism for neurodegeneration. Despite the fundamental importance of translation, the cellular consequences of ribosome stalling in mammalian cells had been unknown until our discovery that a mutation in a novel mammalian ribosome rescue factor Gtpbp2 causes ataxia and degeneration of cerebellar granule cells, cortical and hippocampal neurons, and multiple retinal neurons. Importantly we demonstrated that loss of Gtpbp2 epistatically interacts with a mutation in a CNS- specific, cytoplasmic tRNAArgUCU in the widely used C57BL6/J (B6J) mouse strain to cause neurodegeneration. Our ribosome footprinting experiments revealed that loss of this tRNA led to low levels of ribosome stalling at Arginine AGA codons that was not associated with neurodegeneration. However, stalling was dramatically increased in the absence of Gtpbp2, demonstrating that this protein normally resolves ribosomal stalls. In this application we propose to determine the function of these and other ribosome rescue factors in neuron survival, the impact of increasing age on ribosome stalling in the brain, and additional molecular mechanisms which cause ribosome stalling in mammalian neurons. In Aim 1 we will determine the effects of loss of the ribosome rescue factors Gtpbp1, Hbs1l, and Pelo with- and without- tRNA deficiency. These studies will be complemented by novel computational methods to infer ribosomal locations at increased precision and ascertain mechanisms that distinguish strains using parameter-dependent simulations of the translation process. In Aim 2 we will determine the effects of aging on ribosome stalling and neurodegeneration in the brains of aged wild type and ribosome rescue mutant mice without the tRNA mutation and generate and analyze ribosome footprinting and RNA-Seq data from cerebella of aged mice. In Aim 3 we will investigate pathways that lead to cell death and determine their uniqueness for neurons. We will determine if deficiency of ubiquitously expressed tRNAs induces ribosome stalling and pathology in other organs, analyze the effects of the GCN2/ATF4 and P53 pathways on neurodegeneration, and identify additional modifier genes of neurodegeneration in Gtpbp2-/- mice. Together, we expect these studies to reveal the mechanisms by which dysregulation of translation elongation leads to cellular death and their specificity for neurodegenerative disease.
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
SUSAN L ACKERMAN其他文献
SUSAN L ACKERMAN的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('SUSAN L ACKERMAN', 18)}}的其他基金
Transfer RNAs in Hematopoietic Stem Cell Function
造血干细胞功能中的转移 RNA
- 批准号:
10735318 - 财政年份:2023
- 资助金额:
$ 31.14万 - 项目类别:
The Function of the Cytoplasmic tRNA Repertoire in the Cellular and Molecular Homeostasis of the Mammalian Brain
细胞质 tRNA 库在哺乳动物大脑细胞和分子稳态中的功能
- 批准号:
10550207 - 财政年份:2022
- 资助金额:
$ 31.14万 - 项目类别:
The Function of the Cytoplasmic tRNA Repertoire in the Cellular and Molecular Homeostasis of the Mammalian Brain
细胞质 tRNA 库在哺乳动物大脑细胞和分子稳态中的功能
- 批准号:
10366550 - 财政年份:2022
- 资助金额:
$ 31.14万 - 项目类别:
Ribosome Dysfunction in Neurological Disorders
神经系统疾病中的核糖体功能障碍
- 批准号:
9126621 - 财政年份:2016
- 资助金额:
$ 31.14万 - 项目类别:
Ribosome Dysfunction in Neurological Disorders
神经系统疾病中的核糖体功能障碍
- 批准号:
9213291 - 财政年份:2016
- 资助金额:
$ 31.14万 - 项目类别:
Ribosome Dysfunction in Neurological Disorders
神经系统疾病中的核糖体功能障碍
- 批准号:
9006366 - 财政年份:2015
- 资助金额:
$ 31.14万 - 项目类别:
相似海外基金
Hormone therapy, age of menopause, previous parity, and APOE genotype affect cognition in aging humans.
激素治疗、绝经年龄、既往产次和 APOE 基因型会影响老年人的认知。
- 批准号:
495182 - 财政年份:2023
- 资助金额:
$ 31.14万 - 项目类别:
Investigating how alternative splicing processes affect cartilage biology from development to old age
研究选择性剪接过程如何影响从发育到老年的软骨生物学
- 批准号:
2601817 - 财政年份:2021
- 资助金额:
$ 31.14万 - 项目类别:
Studentship
RAPID: Coronavirus Risk Communication: How Age and Communication Format Affect Risk Perception and Behaviors
RAPID:冠状病毒风险沟通:年龄和沟通方式如何影响风险认知和行为
- 批准号:
2029039 - 财政年份:2020
- 资助金额:
$ 31.14万 - 项目类别:
Standard Grant
Neighborhood and Parent Variables Affect Low-Income Preschool Age Child Physical Activity
社区和家长变量影响低收入学龄前儿童的身体活动
- 批准号:
9888417 - 财政年份:2019
- 资助金额:
$ 31.14万 - 项目类别:
The affect of Age related hearing loss for cognitive function
年龄相关性听力损失对认知功能的影响
- 批准号:
17K11318 - 财政年份:2017
- 资助金额:
$ 31.14万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Affect regulation and Beta Amyloid: Maturational Factors in Aging and Age-Related Pathology
影响调节和 β 淀粉样蛋白:衰老和年龄相关病理学中的成熟因素
- 批准号:
9320090 - 财政年份:2017
- 资助金额:
$ 31.14万 - 项目类别:
Affect regulation and Beta Amyloid: Maturational Factors in Aging and Age-Related Pathology
影响调节和 β 淀粉样蛋白:衰老和年龄相关病理学中的成熟因素
- 批准号:
10166936 - 财政年份:2017
- 资助金额:
$ 31.14万 - 项目类别:
Affect regulation and Beta Amyloid: Maturational Factors in Aging and Age-Related Pathology
影响调节和 β 淀粉样蛋白:衰老和年龄相关病理学中的成熟因素
- 批准号:
9761593 - 财政年份:2017
- 资助金额:
$ 31.14万 - 项目类别:
How age dependent molecular changes in T follicular helper cells affect their function
滤泡辅助 T 细胞的年龄依赖性分子变化如何影响其功能
- 批准号:
BB/M50306X/1 - 财政年份:2014
- 资助金额:
$ 31.14万 - 项目类别:
Training Grant
Inflamm-aging: What do we know about the effect of inflammation on HIV treatment and disease as we age, and how does this affect our search for a Cure?
炎症衰老:随着年龄的增长,我们对炎症对艾滋病毒治疗和疾病的影响了解多少?这对我们寻找治愈方法有何影响?
- 批准号:
288272 - 财政年份:2013
- 资助金额:
$ 31.14万 - 项目类别:
Miscellaneous Programs