The Function of the Cytoplasmic tRNA Repertoire in the Cellular and Molecular Homeostasis of the Mammalian Brain
细胞质 tRNA 库在哺乳动物大脑细胞和分子稳态中的功能
基本信息
- 批准号:10550207
- 负责人:
- 金额:$ 43.06万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-01-15 至 2026-12-31
- 项目状态:未结题
- 来源:
- 关键词:Absence EpilepsyAcuteAllelesAmino AcidsAnticodonAstrocytesBrainBrain regionBuffersCell DeathCell physiologyCellsChIP-seqChemicalsClassificationCodon NucleotidesCytoplasmDataDevelopmentDiseaseEpilepsyEpitopesEquilibriumEukaryotaFRAP1 geneFamilyFamily memberFutureGene ExpressionGene FamilyGenesGeneticGenetic TranscriptionGoalsHippocampusHomeostasisHumanImpairmentIndividualInduced pluripotent stem cell derived neuronsInvestigationLaboratoriesLinkMaintenanceMessenger RNAMicrogliaModelingMolecularMusMutationNatureNerve DegenerationNeuronsNuclearPhenotypePhysiologicalPhysiologyPredispositionProcessPropertyProteinsRNARNA Polymerase IIIRegulationRibosomesRoleSeizuresSeveritiesSignal PathwaySignal TransductionSirolimusSmall RNASynapsesSynaptic TransmissionSynaptosomesTestingTissuesTranscriptTransfer RNATransgenic OrganismsTranslationsUnited StatesVariantVertebratesWild Type MouseWorkbiological adaptation to stresscell typedifferential expressionexcitatory neuronfrontiergenome-widegranule cellin vivoinhibitory neuronmRNA TranslationmTOR Inhibitormammalian genomemembermouse genomemouse modelnervous system disorderneuronal cell bodynovelnull mutationoverexpressionpatch clampresponserestorationtranscriptometransgene expressiontranslatome
项目摘要
PROJECT SUMMARY/ABSTRACT
Transfer RNAs (tRNAs) are critical adaptor molecules that physically link amino acids to codons, decoding mRNA
transcripts during translation. The mammalian genome contains hundreds of tRNA genes which are classified
into families based on their anticodon. Each family contains multiple tRNA genes, suggesting that these genes
may be buffered against the impact of deleterious mutations. Recently, we have demonstrated that a mutation
that impairs processing of n-Tr20, a tRNAArgUCU gene, or its complete loss, alters gene expression and
physiological responses at both the cellular and organismal level, despite the existence of four additional,
functional tRNAArgUCU genes in the mouse genome. More specifically, loss of this highly expressed, neuron-
specific member of the tRNAArgUCU family decreases the susceptibility of mice to seizures and alters the
excitatory-inhibitory balance in the hippocampus. Loss of n-Tr20 leads to ribosome stalling on cognate AGA
codons, along with changes in the transcriptional and translational landscape, characterized by decreased
mTORC1 signaling and activation of the integrated stress response. Transgenic overexpression of the other
members of the tRNAArgUCU family genes restored seizure susceptibility, in a manner which correlated with the
level of tRNA expression from the transgene, suggesting that the phenotypes in n-Tr20-/- mice are due to a
decrease in the tRNAArgUCU neuronal pool, to which n-Tr20 is the major contributor.
Our results provide the first demonstration that mutation of an individual member of a multicopy, nuclear-encoded
tRNA family can alter the molecular landscape and physiology of neurons and provide an impetus for future
investigations of tRNA mutations in the maintenance of cellular homeostasis and in disease. This proposal
expands upon our findings in several ways. In Aim 1, we will determine the cellular mechanisms underlying the
altered excitatory-inhibitory balance upon n-Tr20 loss by conditionally deleting n-Tr20 in either inhibitory or
excitatory neurons during or post-development. We will also investigate the effect of genetically increasing
mTOR signaling in n-Tr20-/- neurons on synaptic transmission. To further understand these physiological
changes, we will analyze the translatome in excitatory and inhibitory neurons of n-Tr20-/- and wild-type mice and
determine whether n-Tr20 deletion disrupts local translation. In Aim 2, we will test our hypothesis that phenotypes
derived from tRNA loss are due to the decreased level of the pool of tRNAs with the same anticodon, and we
will investigate whether the identity of the depleted tRNA family impacts these phenotypes. We will perform ChIP-
Seq from several major cell types in the brain, utilizing a novel mouse model that can conditionally express an
epitope-tagged allele of RNA Polymerase III. Based on this data, we will identify and delete other highly
expressed tRNAs and investigate the effect of their loss on major cell types in the mouse brain. Finally, we will
extend our work into humans by investigating the impact of tRNA loss on the translatome and physiology of
iPSC-derived neurons.
项目总结/摘要
转运RNA(transferRNA,tRNA)是一种重要的衔接分子,它将氨基酸与密码子连接起来,解码mRNA
翻译过程中的记录。哺乳动物基因组包含数百个tRNA基因,
根据反密码子分为不同的家族每个家族都包含多个tRNA基因,这表明这些基因
可以缓冲有害突变的影响。最近,我们证明了一种突变
损害n-Tr 20(一种tRNAArgUCU基因)的加工或其完全丢失,改变基因表达,
在细胞和生物体水平的生理反应,尽管存在四个额外的,
功能性tRNAArgUCU基因。更具体地说,这种高度表达的神经元的缺失-
tRNAArgUCU家族的一个特定成员降低了小鼠对癫痫发作的易感性,
海马体中的兴奋-抑制平衡。n-Tr 20的缺失导致核糖体在同源阿加上停滞
密码子,沿着转录和翻译景观的变化,其特征是减少
mTORC 1信号传导和整合应激反应的激活。另一种转基因过表达
tRNAArgUCU家族基因的成员恢复了癫痫发作的易感性,其方式与
转基因的tRNA表达水平,表明n-Tr 20-/-小鼠的表型是由于
tRNAArgUCU神经元池的减少,其中n-Tr 20是主要贡献者。
我们的研究结果首次证明了多拷贝核编码基因的单个成员的突变,
tRNA家族可以改变神经元的分子景观和生理学,并为未来的神经元生长提供动力。
研究tRNA突变在维持细胞稳态和疾病中的作用。这项建议
从几个方面扩展了我们的发现。在目标1中,我们将确定潜在的细胞机制,
通过在抑制性或非抑制性细胞中有条件地缺失n-Tr 20,
在发育过程中或发育后的兴奋性神经元。我们还将研究基因增加的影响,
n-Tr 20-/-神经元中的mTOR信号传导对突触传递的影响。为了进一步了解这些生理
变化,我们将分析n-Tr 20-/-和野生型小鼠的兴奋性和抑制性神经元中的翻译组,
确定n-Tr 20缺失是否破坏局部翻译。在目标2中,我们将检验我们的假设,
来自tRNA丢失的突变是由于具有相同反密码子的tRNA库的水平降低,我们
将研究耗尽的tRNA家族的身份是否影响这些表型。我们将执行ChIP-
从大脑中的几种主要细胞类型的Seq,利用一种新的小鼠模型,
RNA聚合酶III的表位标记的等位基因。根据这些数据,我们将识别并删除其他高度
表达的tRNA,并研究其损失对小鼠脑中主要细胞类型的影响。最后我们将
通过研究tRNA缺失对翻译组和生理学的影响,将我们的工作扩展到人类
iPSC衍生的神经元。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
SUSAN L ACKERMAN其他文献
SUSAN L ACKERMAN的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('SUSAN L ACKERMAN', 18)}}的其他基金
Transfer RNAs in Hematopoietic Stem Cell Function
造血干细胞功能中的转移 RNA
- 批准号:
10735318 - 财政年份:2023
- 资助金额:
$ 43.06万 - 项目类别:
The Function of the Cytoplasmic tRNA Repertoire in the Cellular and Molecular Homeostasis of the Mammalian Brain
细胞质 tRNA 库在哺乳动物大脑细胞和分子稳态中的功能
- 批准号:
10366550 - 财政年份:2022
- 资助金额:
$ 43.06万 - 项目类别:
Ribosome Dysfunction in Neurological Disorders
神经系统疾病中的核糖体功能障碍
- 批准号:
9126621 - 财政年份:2016
- 资助金额:
$ 43.06万 - 项目类别:
Ribosome Dysfunction in Neurological Disorders
神经系统疾病中的核糖体功能障碍
- 批准号:
9271261 - 财政年份:2016
- 资助金额:
$ 43.06万 - 项目类别:
Ribosome Dysfunction in Neurological Disorders
神经系统疾病中的核糖体功能障碍
- 批准号:
9213291 - 财政年份:2016
- 资助金额:
$ 43.06万 - 项目类别:
Ribosome Dysfunction in Neurological Disorders
神经系统疾病中的核糖体功能障碍
- 批准号:
9006366 - 财政年份:2015
- 资助金额:
$ 43.06万 - 项目类别:
相似海外基金
Acute senescence: a novel host defence counteracting typhoidal Salmonella
急性衰老:对抗伤寒沙门氏菌的新型宿主防御
- 批准号:
MR/X02329X/1 - 财政年份:2024
- 资助金额:
$ 43.06万 - 项目类别:
Fellowship
Transcriptional assessment of haematopoietic differentiation to risk-stratify acute lymphoblastic leukaemia
造血分化的转录评估对急性淋巴细胞白血病的风险分层
- 批准号:
MR/Y009568/1 - 财政年份:2024
- 资助金额:
$ 43.06万 - 项目类别:
Fellowship
Combining two unique AI platforms for the discovery of novel genetic therapeutic targets & preclinical validation of synthetic biomolecules to treat Acute myeloid leukaemia (AML).
结合两个独特的人工智能平台来发现新的基因治疗靶点
- 批准号:
10090332 - 财政年份:2024
- 资助金额:
$ 43.06万 - 项目类别:
Collaborative R&D
Cellular Neuroinflammation in Acute Brain Injury
急性脑损伤中的细胞神经炎症
- 批准号:
MR/X021882/1 - 财政年份:2024
- 资助金额:
$ 43.06万 - 项目类别:
Research Grant
STTR Phase I: Non-invasive focused ultrasound treatment to modulate the immune system for acute and chronic kidney rejection
STTR 第一期:非侵入性聚焦超声治疗调节免疫系统以治疗急性和慢性肾排斥
- 批准号:
2312694 - 财政年份:2024
- 资助金额:
$ 43.06万 - 项目类别:
Standard Grant
Combining Mechanistic Modelling with Machine Learning for Diagnosis of Acute Respiratory Distress Syndrome
机械建模与机器学习相结合诊断急性呼吸窘迫综合征
- 批准号:
EP/Y003527/1 - 财政年份:2024
- 资助金额:
$ 43.06万 - 项目类别:
Research Grant
FITEAML: Functional Interrogation of Transposable Elements in Acute Myeloid Leukaemia
FITEAML:急性髓系白血病转座元件的功能研究
- 批准号:
EP/Y030338/1 - 财政年份:2024
- 资助金额:
$ 43.06万 - 项目类别:
Research Grant
KAT2A PROTACs targetting the differentiation of blasts and leukemic stem cells for the treatment of Acute Myeloid Leukaemia
KAT2A PROTAC 靶向原始细胞和白血病干细胞的分化,用于治疗急性髓系白血病
- 批准号:
MR/X029557/1 - 财政年份:2024
- 资助金额:
$ 43.06万 - 项目类别:
Research Grant
ロボット支援肝切除術は真に低侵襲なのか?acute phaseに着目して
机器人辅助肝切除术真的是微创吗?
- 批准号:
24K19395 - 财政年份:2024
- 资助金额:
$ 43.06万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Collaborative Research: Changes and Impact of Right Ventricle Viscoelasticity Under Acute Stress and Chronic Pulmonary Hypertension
合作研究:急性应激和慢性肺动脉高压下右心室粘弹性的变化和影响
- 批准号:
2244994 - 财政年份:2023
- 资助金额:
$ 43.06万 - 项目类别:
Standard Grant














{{item.name}}会员




