Innate inflammation in osteoarthritis
骨关节炎的先天性炎症
基本信息
- 批准号:9351732
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2012
- 资助国家:美国
- 起止时间:2012-04-01 至 2021-03-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAffectAgeAgingAnti-Inflammatory AgentsAnti-inflammatoryApoptosisAutophagocytosisBCL2/Adenovirus E1B 19kd Interacting Protein 3-LikeBiogenesisBiological MarkersBiologyBiomechanicsCartilageCellsCellularityChondrocytesCouplingDegenerative polyarthritisDevelopmentDiseaseElderlyExcisionFailureFeedbackFunctional disorderFundingGene ExpressionGoalsHomeostasisHumanImpairmentIn VitroInflammagingInflammationInflammatoryInflammatory ResponseInjuryJointsKneeKnee OsteoarthritisKnock-outLinkMaintenanceMediatingMediator of activation proteinMedicalMembrane ProteinsMitochondriaModelingMolecularMusNuclearNucleosome Core ParticleOutcomeOuter Mitochondrial MembranePINK1 genePathogenesisPeptidesPhenotypePolyubiquitinationProcessProteinsQuality ControlRisk FactorsRoleSignal TransductionSorting - Cell MovementStressSystemSystems BiologyTestingTranslationsTraumaUbiquitinVeteransWorkagedanalogarthropathiesarticular cartilagecartilage cellcartilage degradationdisabilityearly onsetfactor Afeedinggain of functionhumaninimprovedimproved functioningin vivoinjuredinnovationjoint injurymiddle agemitochondrial dysfunctionmouse modelmtTF1 transcription factormulticatalytic endopeptidase complexnormal agingnovelnovel markerparkin gene/proteinresponseresponse to injurytargeted treatmenttissue degenerationtranscription factor
项目摘要
Osteoarthritis (OA) is a major cause of disability in the USA, particularly so in veterans, who are
disproportionately affected by aging and joint trauma. OA culminates in failure of the joint, which includes
compromised cartilage chondrocyte differentiation and function, by mechanisms that are not completely
understood. Because there is no disease-modifying medical therapy for OA, there is major unmet need to
advance translation. Our long-term objective is to validate novel targets to limit OA cartilage failure, including
processes that promote molecular innate inflammatory processes ("inflamm-aging"). A major obstacle in the
field is that multiple homeostasis mechanisms are dysfunctional in OA chondrocytes, and we need to sort out
which are the earliest, and central to the chondrocyte differentiation changes and viability loss. We have
identified decreased mitochondrial mass, function, and biogenesis capacity in aging and OA knee
chondrocytes, linked partly to deficiency of TFAM and other mitochondrial transcription factors. Our core
hypothesis is that articular chondrocyte mitochondrial dysfunction is an early, pivotal, targetable, and reversible
change in OA due to aging and biomechanical injury, and amplified by altered mitochondrial retrograde
signaling. This includes decrease in the anti-inflammatory mitochondrial peptide humanin, causing effects on
chondrocytes that we posit to be at least partly reversible in vitro using the humanin analog HNGF6A.
Effective control of injury- and aging-associated tissue degeneration requires not only biogenesis but also
maintenance of healthy mitochondria. In the novel, testable OA pathogenesis model that we hypothesize,
chondrocyte mitochondrial damage is perpetuated, in large part, by feed-forward and feedback loops involving
compromise in cell surveillance mechanisms that normally assure mitochondrial quality control. We specifically
hypothesize the failure of chondrocyte mitophagy, via not only deficiency of the mitophagy “linchpin” BNIP3a,
but also decreased proteasomal degradation of damaged polyubiquitinated outer mitochondrial membrane
proteins, such as PINK1 and Parkin, by the ubiquitin proteasome system (UPS), which is essential for
mitophagy.
Our preliminary studies break substantial new ground by revealing markedly impaired UPS function in
OA chondrocytes, including defective 20S proteasome core particle proteolytic activity, and accumulation of
chondrocyte K48 polyubiquitinated proteins. We further identified that human knee OA chondrocytes have
impaired assembly of the proteasome, a state that induces global outcomes of loss of chondrocytic
differentiation, via diminished expression of the chondrocyte master transcription factor Sox9, and decreased
matrix anabolic gene expression. For testing our integrative model of early, pivotal OA pathogenesis,
innovation is applied by our bringing together of a particularly diverse investigative team, including
collaborating experts in mitochondrial biology, autophagy and mitophagy, and in the UPS and profiling of
cellular ubiquitylome signatures. We will employ our recently validated model of chondrocyte biomechanical
injury, and carry out unique studies of human chondrocyte aging, via age-matched analyses of both normal
and OA knee chondrocytes. Moreover, we address the problem of specifically testing the role of mitochondrial
damage in OA of aging, by generating a chondrocyte-specific mouse model of TFAM knockout, which will be
compared to normal mice in analyses for OA with aging in vivo. Completion of these studies will advance our
long term goal of spurring translation in OA, by identifying novel OA chondrocyte biomarkers, and by
pinpointing humanin and other novel, rational targets for potential development of medical disease-modifying
OA therapies.
骨关节炎 (OA) 是美国残疾的主要原因,尤其是退伍军人,他们
不成比例地受到衰老和关节创伤的影响。 OA 最终导致关节失效,其中包括
软骨细胞分化和功能受损,机制不完全
明白了。由于 OA 尚无缓解疾病的药物疗法,因此存在重大未满足的需求
提前翻译。我们的长期目标是验证限制 OA 软骨衰竭的新目标,包括
促进分子先天炎症过程(“炎症老化”)的过程。的一个主要障碍
OA软骨细胞中多种稳态机制功能失调,我们需要弄清楚
这是最早的,也是软骨细胞分化变化和活力丧失的核心。我们有
发现衰老和 OA 膝关节中线粒体质量、功能和生物发生能力下降
软骨细胞,部分与 TFAM 和其他线粒体转录因子的缺乏有关。我们的核心
假设关节软骨细胞线粒体功能障碍是一种早期的、关键的、可靶向的和可逆的
由于衰老和生物力学损伤而导致的 OA 变化,并因线粒体逆行改变而放大
发信号。这包括抗炎线粒体肽人肽的减少,从而对
我们认为使用人源类似物 HNGF6A 在体外至少部分可逆软骨细胞。
有效控制损伤和衰老相关的组织退化不仅需要生物发生,还需要
维持健康的线粒体。在我们假设的新型、可测试的 OA 发病机制模型中,
软骨细胞线粒体损伤在很大程度上是通过涉及以下因素的前馈和反馈循环而永久存在的:
通常确保线粒体质量控制的细胞监视机制受到损害。我们特别
假设软骨细胞线粒体自噬失败不仅是由于线粒体自噬“关键”BNIP3a 的缺陷,
而且还减少了受损多泛素化线粒体外膜的蛋白酶体降解
蛋白质,如 PINK1 和 Parkin,由泛素蛋白酶体系统 (UPS) 产生,该系统对于
线粒体自噬。
我们的初步研究揭示了 UPS 功能明显受损,从而开辟了重大新天地。
OA 软骨细胞,包括有缺陷的 20S 蛋白酶体核心颗粒蛋白水解活性和积累
软骨细胞 K48 多聚泛素化蛋白。我们进一步发现人膝关节骨关节炎软骨细胞具有
蛋白酶体组装受损,这种状态会导致软骨细胞丧失的整体结果
通过减少软骨细胞主转录因子 Sox9 的表达来促进分化,并减少
矩阵合成代谢基因表达。为了测试我们的早期关键 OA 发病机制的综合模型,
我们将一个特别多元化的调查团队聚集在一起,应用创新,其中包括
线粒体生物学、自噬和线粒体自噬以及 UPS 和分析领域的合作专家
细胞泛素组特征。我们将采用我们最近验证的软骨细胞生物力学模型
损伤,并通过对正常和正常软骨细胞的年龄匹配分析,对人类软骨细胞衰老进行独特的研究
和 OA 膝关节软骨细胞。此外,我们解决了专门测试线粒体作用的问题
通过生成 TFAM 敲除的软骨细胞特异性小鼠模型,该模型将在 OA 损伤中发挥作用
与正常小鼠相比,分析体内 OA 随衰老情况。完成这些研究将促进我们
通过识别新的 OA 软骨细胞生物标志物以及通过
确定护脑素和其他新颖、合理的目标,以促进医学疾病缓解的潜在发展
OA疗法。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Robert A. Terkeltaub其他文献
Does diet contribute to the development of hyperuricemia?
- DOI:
10.1007/s11926-996-0026-2 - 发表时间:
2006-06-01 - 期刊:
- 影响因子:3.900
- 作者:
Susan J. Lee;Robert A. Terkeltaub - 通讯作者:
Robert A. Terkeltaub
Robert A. Terkeltaub的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Robert A. Terkeltaub', 18)}}的其他基金
Intersections of matrix biology with inflammation in a new model of gout
痛风新模型中基质生物学与炎症的交叉点
- 批准号:
10579760 - 财政年份:2022
- 资助金额:
-- - 项目类别:
相似海外基金
Hormone therapy, age of menopause, previous parity, and APOE genotype affect cognition in aging humans.
激素治疗、绝经年龄、既往产次和 APOE 基因型会影响老年人的认知。
- 批准号:
495182 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Investigating how alternative splicing processes affect cartilage biology from development to old age
研究选择性剪接过程如何影响从发育到老年的软骨生物学
- 批准号:
2601817 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Studentship
RAPID: Coronavirus Risk Communication: How Age and Communication Format Affect Risk Perception and Behaviors
RAPID:冠状病毒风险沟通:年龄和沟通方式如何影响风险认知和行为
- 批准号:
2029039 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Standard Grant
Neighborhood and Parent Variables Affect Low-Income Preschool Age Child Physical Activity
社区和家长变量影响低收入学龄前儿童的身体活动
- 批准号:
9888417 - 财政年份:2019
- 资助金额:
-- - 项目类别:
The affect of Age related hearing loss for cognitive function
年龄相关性听力损失对认知功能的影响
- 批准号:
17K11318 - 财政年份:2017
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Affect regulation and Beta Amyloid: Maturational Factors in Aging and Age-Related Pathology
影响调节和 β 淀粉样蛋白:衰老和年龄相关病理学中的成熟因素
- 批准号:
9320090 - 财政年份:2017
- 资助金额:
-- - 项目类别:
Affect regulation and Beta Amyloid: Maturational Factors in Aging and Age-Related Pathology
影响调节和 β 淀粉样蛋白:衰老和年龄相关病理学中的成熟因素
- 批准号:
10166936 - 财政年份:2017
- 资助金额:
-- - 项目类别:
Affect regulation and Beta Amyloid: Maturational Factors in Aging and Age-Related Pathology
影响调节和 β 淀粉样蛋白:衰老和年龄相关病理学中的成熟因素
- 批准号:
9761593 - 财政年份:2017
- 资助金额:
-- - 项目类别:
How age dependent molecular changes in T follicular helper cells affect their function
滤泡辅助 T 细胞的年龄依赖性分子变化如何影响其功能
- 批准号:
BB/M50306X/1 - 财政年份:2014
- 资助金额:
-- - 项目类别:
Training Grant
Inflamm-aging: What do we know about the effect of inflammation on HIV treatment and disease as we age, and how does this affect our search for a Cure?
炎症衰老:随着年龄的增长,我们对炎症对艾滋病毒治疗和疾病的影响了解多少?这对我们寻找治愈方法有何影响?
- 批准号:
288272 - 财政年份:2013
- 资助金额:
-- - 项目类别:
Miscellaneous Programs














{{item.name}}会员




