Using Machine Learning to Predict Problematic Prescription Opioid Use and Opioid Overdose

使用机器学习来预测有问题的处方阿片类药物使用和阿片类药物过量

基本信息

  • 批准号:
    9421755
  • 负责人:
  • 金额:
    $ 60.11万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2017
  • 资助国家:
    美国
  • 起止时间:
    2017-09-01 至 2020-06-30
  • 项目状态:
    已结题

项目摘要

Problematic prescription opioid use, defined as nonmedical use, misuse, or abuse of opioid medications, is epidemic in the US. Prescription opioid overdose deaths more than quadrupled from 1999 to 2015. Efforts by health care systems and payers to combat the opioid epidemic are impeded by a lack of accurate and efficient methods to identify individuals most at risk for problematic opioid use and overdose, leading to broad interventions that are burdensome to patients and expensive for payers. Payers are currently defining high risk and targeting interventions (e.g. pharmacy lock-in programs) based on individual risk factors, such as high opioid dosage, identified in prior studies using traditional statistical approaches. However, these traditional approaches have significant limitations, especially when handling large datasets with numerous variables, multi-level interactions, and missing data. Moreover, the prior studies focused on identifying risk factors rather than predicting actual risk. Alternatively, machine learning is an advanced technique that handles complex interactions in large data, uncovers hidden patterns, and yields precise prediction algorithms that, in many cases, are superior to those developed using traditional methods. Machine learning is widely used in activities from fraud detection to cancer genomics, but has not yet been applied to address the opioid epidemic. Accordingly, the proposed study will apply machine learning to develop prediction algorithms that can more accurately identify patients at high risk of problematic opioid use and overdose using data sources that are readily available to payers and health care systems. The project will build on existing academic-state partnerships to apply novel machine learning approaches to administrative claims data for all Medicaid beneficiaries in Pennsylvania (PA) and Arizona (AZ). The project will also link Medicaid data in AZ to electronic health records to capture clinical information (e.g., lab results, pain severity) not available in administrative data, along with death certificate data on lethal overdose. These data, covering 2007-2016, will be used to achieve two specific aims: (1) to develop and validate two separate prediction algorithms to identify patients at risk of problematic opioid use and opioid overdose; (2) to compare the accuracy of a prediction algorithm that integrates clinical data with Medicaid claims versus a claims-based approach alone to identify patients at risk of problematic opioid use and opioid overdose. The machine learning approaches will include random forests and TreeNet with representative classification trees, and the predictive ability (e.g., misclassification rates) of these algorithms will be compared to traditional statistical models. Given the high prevalence of mental health/substance use disorders (~50%) and opioid utilization (>20%) among Medicaid enrollees and the lack of adequate prediction algorithms, Medicaid is an ideal setting for the proposed project. These analyses will provide the partnering Medicaid programs with valuable information and tools that they can apply to more precisely target interventions to prevent problematic opioid use and overdose.
有问题的处方阿片类药物使用,定义为非医疗使用,误用或滥用阿片类药物, 疫情在美国。从1999年到2015年,处方阿片类药物过量死亡人数增加了四倍多。努力 卫生保健系统和支付者对抗阿片类药物流行病的障碍是缺乏准确和有效的 确定最有可能出现阿片类药物使用和过量问题的个人的方法, 这些干预措施对患者来说是负担,对支付者来说是昂贵的。付款人目前正在定义高风险 并根据个人风险因素(如高风险)进行针对性干预(如药房锁定计划)。 阿片类药物剂量,使用传统的统计方法在先前的研究中确定。然而,这些传统 这些方法有很大的局限性,特别是在处理具有许多变量的大型数据集时, 多层次的互动和缺失的数据。此外,先前的研究侧重于确定风险因素,而不是 而不是预测实际风险。或者,机器学习是一种先进的技术, 大数据中的交互,发现隐藏的模式,并产生精确的预测算法,在许多 的情况下,是上级优于那些使用传统方法开发。机器学习广泛应用于活动中 从欺诈检测到癌症基因组学,但尚未应用于解决阿片类药物的流行。 因此,拟议的研究将应用机器学习来开发预测算法, 使用以下数据源准确识别存在阿片类药物使用问题和过量的高风险患者: 方便支付者和医疗保健系统使用。该项目将建立在现有的学术国家 将新型机器学习方法应用于所有医疗补助的行政索赔数据 宾夕法尼亚州(PA)和亚利桑那州(AZ)的受益人。该项目还将把亚利桑那州的医疗补助数据链接到电子 健康记录以捕获临床信息(例如,实验室结果、疼痛严重程度)在管理中不可用 数据,沿着死亡证明上关于致命过量的数据。这些数据涵盖2007-2016年,将用于 实现两个具体目标:(1)开发和验证两个独立的预测算法,以识别患者, 有问题的阿片类药物使用和阿片类药物过量的风险;(2)比较预测算法的准确性, 将临床数据与医疗补助索赔相结合,而不是仅基于索赔的方法来识别处于风险中的患者 阿片类药物滥用和过量使用的案例机器学习方法将包括随机森林 和具有代表性分类树的TreeNet,以及预测能力(例如,误分类率) 这些算法将与传统的统计模型进行比较。 鉴于精神健康/物质使用障碍(~50%)和阿片类药物使用(>20%)的高患病率, 在医疗补助登记者中,缺乏足够的预测算法,医疗补助是一个理想的环境, 拟议项目。这些分析将为合作的医疗补助计划提供有价值的信息, 他们可以应用于更精确的目标干预措施的工具,以防止有问题的阿片类药物使用和过量。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Walid F. Gellad其他文献

Active surveillance pharmacovigilance for emClostridioides difficile/em infection and gastrointestinal bleeding: an analytic framework based on case-control studies
艰难梭菌感染和胃肠道出血的主动监测药物警戒:基于病例对照研究的分析框架
  • DOI:
    10.1016/j.ebiom.2024.105130
  • 发表时间:
    2024-05-01
  • 期刊:
  • 影响因子:
    10.800
  • 作者:
    Ravy K. Vajravelu;Amy R. Byerly;Robert Feldman;Scott D. Rothenberger;Robert E. Schoen;Walid F. Gellad;James D. Lewis
  • 通讯作者:
    James D. Lewis
The Veterans Choice Act and Dual Health System Use
Marked Increase in Sales of Erectile Dysfunction Medication During COVID-19
  • DOI:
    10.1007/s11606-021-06968-2
  • 发表时间:
    2021-06-25
  • 期刊:
  • 影响因子:
    4.200
  • 作者:
    Inmaculada Hernandez;Zeynep Gul;Walid F. Gellad;Benjamin J. Davies
  • 通讯作者:
    Benjamin J. Davies
Temporal Trends in Opioid-Related Care and Pain Among Veterans at the End of Life
退伍军人临终时与阿片类药物相关护理和疼痛的时间趋势
  • DOI:
    10.1016/j.jpainsymman.2025.03.032
  • 发表时间:
    2025-07-01
  • 期刊:
  • 影响因子:
    3.500
  • 作者:
    Melissa W. Wachterman;Stuart R. Lipsitz;Erin Beilstein-Wedel;Walid F. Gellad;Karl A. Lorenz;Nancy L. Keating
  • 通讯作者:
    Nancy L. Keating
Maximierung der Sicherheit von Flibanserin: Die Rolle von Aufsichtsbehörden, Klinikern und Patientinnen
Flibanserin 的最大安全:Die Rolle von Aufsichtsbehörden、Klinikern und Patientinnen
  • DOI:
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Sheriza N. Baksh;Walid F. Gellad;G. Alexander
  • 通讯作者:
    G. Alexander

Walid F. Gellad的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Walid F. Gellad', 18)}}的其他基金

Leveraging a natural experiment to identify the effects of VA community care programs on health care quality, equity, and Veteran experiences
利用自然实验来确定 VA 社区护理计划对医疗保健质量、公平性和退伍军人体验的影响
  • 批准号:
    10595577
  • 财政年份:
    2022
  • 资助金额:
    $ 60.11万
  • 项目类别:
Dual Use of Medications (DUAL) Partnered Evaluation Initiative
药物双重用途 (DUAL) 合作评估计划
  • 批准号:
    10181835
  • 财政年份:
    2021
  • 资助金额:
    $ 60.11万
  • 项目类别:
STORM Implementation Program Evaluation
STORM实施计划评估
  • 批准号:
    9568349
  • 财政年份:
    2017
  • 资助金额:
    $ 60.11万
  • 项目类别:
Machine-Learning Prediction and Reducing Overdoses with EHR Nudges (mPROVEN)
机器学习预测并通过 EHR 推动减少用药过量 (mPROVEN)
  • 批准号:
    10641919
  • 财政年份:
    2017
  • 资助金额:
    $ 60.11万
  • 项目类别:
Safety of Opioid use Among Veterans Receiving Care in Multiple Health Systems
在多个卫生系统接受护理的退伍军人使用阿片类药物的安全性
  • 批准号:
    9015268
  • 财政年份:
    2015
  • 资助金额:
    $ 60.11万
  • 项目类别:
Safety of Opioid use Among Veterans Receiving Care in Multiple Health Systems
在多个卫生系统接受护理的退伍军人使用阿片类药物的安全性
  • 批准号:
    9888304
  • 财政年份:
    2015
  • 资助金额:
    $ 60.11万
  • 项目类别:

相似海外基金

Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
  • 批准号:
    MR/S03398X/2
  • 财政年份:
    2024
  • 资助金额:
    $ 60.11万
  • 项目类别:
    Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
  • 批准号:
    EP/Y001486/1
  • 财政年份:
    2024
  • 资助金额:
    $ 60.11万
  • 项目类别:
    Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
  • 批准号:
    2338423
  • 财政年份:
    2024
  • 资助金额:
    $ 60.11万
  • 项目类别:
    Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
  • 批准号:
    MR/X03657X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 60.11万
  • 项目类别:
    Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
  • 批准号:
    2348066
  • 财政年份:
    2024
  • 资助金额:
    $ 60.11万
  • 项目类别:
    Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
  • 批准号:
    AH/Z505481/1
  • 财政年份:
    2024
  • 资助金额:
    $ 60.11万
  • 项目类别:
    Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10107647
  • 财政年份:
    2024
  • 资助金额:
    $ 60.11万
  • 项目类别:
    EU-Funded
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
  • 批准号:
    2341402
  • 财政年份:
    2024
  • 资助金额:
    $ 60.11万
  • 项目类别:
    Standard Grant
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10106221
  • 财政年份:
    2024
  • 资助金额:
    $ 60.11万
  • 项目类别:
    EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
  • 批准号:
    AH/Z505341/1
  • 财政年份:
    2024
  • 资助金额:
    $ 60.11万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了