Machine-Learning Prediction and Reducing Overdoses with EHR Nudges (mPROVEN)
机器学习预测并通过 EHR 推动减少用药过量 (mPROVEN)
基本信息
- 批准号:10641919
- 负责人:
- 金额:$ 70.82万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-09-01 至 2027-04-30
- 项目状态:未结题
- 来源:
- 关键词:AccountabilityAddressAlgorithmsAreaBehaviorBehavioralBenzodiazepinesCalibrationCaringClassificationCluster randomized trialCoupledDiscriminationDoseElectronic Health RecordEpidemicFaceFocus GroupsFoundationsFundingGoalsHealth BenefitHealth systemIndividualInterventionMachine LearningMalignant NeoplasmsMethodsModelingMorphineNaloxoneNational Institute of Drug AbuseOpioidOutcomeOverdoseOverdose reductionPatient riskPatientsPerformancePhasePopulationPublic HealthQualifyingRandomizedRiskRisk FactorsRisk ReductionSafetySubstance Use DisorderTestingTimeUnited StatesWorkalgorithmic biasarmcostdesigndosageeffectiveness evaluationexperiencegradient boostinghealth care settingshigh riskhigh risk populationimprovedinnovationmachine learning algorithmmachine learning predictionmilligrammortality risknovel strategiesopioid epidemicopioid misuseopioid mortalityopioid overdoseoverdose riskpatient health informationpilot testprediction algorithmpredictive toolsprescription opioidpreventprimary care practiceprimary outcomeprovider behaviorresponserisk predictionsecondary analysisstatisticssuccesssynergismtooltreatment as usualusability
项目摘要
The US continues to grapple with an opioid epidemic, with ~69,700 opioid overdose deaths in 2020. Health
systems have instituted multiple interventions to reduce patient risk, many focusing on decreasing unsafe
opioid prescribing among those viewed as high-risk. However, there are limited tools to identify who is truly at
high risk of overdose, leading to burdensome interventions targeting an overly broad population or missing key
high-risk individuals. Even if those who are at risk can be identified, the interventions lack effective strategies to
change clinician behavior, focusing instead on blunt tools to reduce prescribing rather than reduce risk.
In prior work, we developed and externally validated machine-learning algorithms that identify patients at high
risk of opioid overdose, even if not actively prescribed opioids. Separately, we demonstrated how behavioral
nudge alerts embedded in the electronic health record (EHR) can be combined with risk prediction tools to
change clinician behavior. In this project, we propose to reduce opioid overdose risk by bringing together
machine-learning based overdose risk prediction and behavioral nudges through a scalable EHR intervention
to improve clinician prescribing behavior. In a large academic health system (UPMC), we propose the following
specific aims: (1) Incorporate our previously validated machine learning algorithm into the EHR to predict 3-
month risk of opioid overdose; (2) Pilot test a clinician-targeted behavioral nudge intervention in the EHR for
patients at high predicted risk for opioid overdose; (3) Evaluate the effectiveness of providing risk scores in the
EHR with and without a behavioral nudge to improve opioid prescribing safety and reduce overdose risk.
In Aim 1, we will apply our gradient boosting machine overdose prediction algorithm to the UPMC Epic-based
EHR. We will optimize the algorithm for use in UPMC primary care practices, addressing model accuracy and
algorithmic biases. In Aim 2, we will combine the risk score generated by our algorithm with clinician nudges in
the EHR, using a 3-phase pilot with focus groups, silent testing, and live testing in 3 primary care practices.
The nudge intervention will target clinicians caring for high-risk patients and will use active choice prompts for
naloxone and accountable justifications for opioid and benzodiazepine prescribing. In Aim 3, we will conduct a
cluster randomized trial in 45 UPMC primary care practices, with 3 arms: (1) usual care; (2) EHR-embedded
risk score; 3) EHR-embedded risk score coupled with the nudge from Aim 2. The EHR-embedded risk score
arm will consist of an alert in the EHR that identifies the patient as high risk for overdose. In the risk score
coupled with nudge arm, a similar EHR alert about high-risk status will flag, along with the nudges from Aim 2.
The primary outcome will be a composite of 3 prescribing practices associated with reduced risk of overdose:
naloxone prescription, opioid dosage <50MME per day, and no opioid/benzodiazepine overlap.
Our proposal builds on our prior NIDA-funded work and experience with nudge interventions and is aligned
with NIDA’s strategic goals to develop and test novel strategies for preventing opioid misuse and overdose.
美国继续与阿片类药物流行病作斗争,2020年约有69,700人死于阿片类药物过量。健康
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Walid F. Gellad其他文献
Active surveillance pharmacovigilance for emClostridioides difficile/em infection and gastrointestinal bleeding: an analytic framework based on case-control studies
艰难梭菌感染和胃肠道出血的主动监测药物警戒:基于病例对照研究的分析框架
- DOI:
10.1016/j.ebiom.2024.105130 - 发表时间:
2024-05-01 - 期刊:
- 影响因子:10.800
- 作者:
Ravy K. Vajravelu;Amy R. Byerly;Robert Feldman;Scott D. Rothenberger;Robert E. Schoen;Walid F. Gellad;James D. Lewis - 通讯作者:
James D. Lewis
The Veterans Choice Act and Dual Health System Use
- DOI:
10.1007/s11606-015-3492-2 - 发表时间:
2015-08-20 - 期刊:
- 影响因子:4.200
- 作者:
Walid F. Gellad - 通讯作者:
Walid F. Gellad
Marked Increase in Sales of Erectile Dysfunction Medication During COVID-19
- DOI:
10.1007/s11606-021-06968-2 - 发表时间:
2021-06-25 - 期刊:
- 影响因子:4.200
- 作者:
Inmaculada Hernandez;Zeynep Gul;Walid F. Gellad;Benjamin J. Davies - 通讯作者:
Benjamin J. Davies
Temporal Trends in Opioid-Related Care and Pain Among Veterans at the End of Life
退伍军人临终时与阿片类药物相关护理和疼痛的时间趋势
- DOI:
10.1016/j.jpainsymman.2025.03.032 - 发表时间:
2025-07-01 - 期刊:
- 影响因子:3.500
- 作者:
Melissa W. Wachterman;Stuart R. Lipsitz;Erin Beilstein-Wedel;Walid F. Gellad;Karl A. Lorenz;Nancy L. Keating - 通讯作者:
Nancy L. Keating
Maximierung der Sicherheit von Flibanserin: Die Rolle von Aufsichtsbehörden, Klinikern und Patientinnen
Flibanserin 的最大安全:Die Rolle von Aufsichtsbehörden、Klinikern und Patientinnen
- DOI:
- 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
Sheriza N. Baksh;Walid F. Gellad;G. Alexander - 通讯作者:
G. Alexander
Walid F. Gellad的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Walid F. Gellad', 18)}}的其他基金
Leveraging a natural experiment to identify the effects of VA community care programs on health care quality, equity, and Veteran experiences
利用自然实验来确定 VA 社区护理计划对医疗保健质量、公平性和退伍军人体验的影响
- 批准号:
10595577 - 财政年份:2022
- 资助金额:
$ 70.82万 - 项目类别:
Dual Use of Medications (DUAL) Partnered Evaluation Initiative
药物双重用途 (DUAL) 合作评估计划
- 批准号:
10181835 - 财政年份:2021
- 资助金额:
$ 70.82万 - 项目类别:
Using Machine Learning to Predict Problematic Prescription Opioid Use and Opioid Overdose
使用机器学习来预测有问题的处方阿片类药物使用和阿片类药物过量
- 批准号:
9421755 - 财政年份:2017
- 资助金额:
$ 70.82万 - 项目类别:
Safety of Opioid use Among Veterans Receiving Care in Multiple Health Systems
在多个卫生系统接受护理的退伍军人使用阿片类药物的安全性
- 批准号:
9015268 - 财政年份:2015
- 资助金额:
$ 70.82万 - 项目类别:
Safety of Opioid use Among Veterans Receiving Care in Multiple Health Systems
在多个卫生系统接受护理的退伍军人使用阿片类药物的安全性
- 批准号:
9888304 - 财政年份:2015
- 资助金额:
$ 70.82万 - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 70.82万 - 项目类别:
Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 70.82万 - 项目类别:
Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 70.82万 - 项目类别:
Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 70.82万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 70.82万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 70.82万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 70.82万 - 项目类别:
EU-Funded
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 70.82万 - 项目类别:
Standard Grant
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 70.82万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 70.82万 - 项目类别:
Research Grant