Large aperture and wideband modular ultrasound arrays for the diagnosis of liver cancer
用于肝癌诊断的大孔径宽带模块化超声阵列
基本信息
- 批准号:9332693
- 负责人:
- 金额:$ 66.74万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-03-08 至 2022-02-28
- 项目状态:已结题
- 来源:
- 关键词:AbdomenAcousticsAddressAmericanAreaBuffersCirrhosisClinicalCommunitiesComputer softwareCrystallizationDataDetectionDevelopmentDiagnosisDimensionsElectronicsElementsFrequenciesFutureGeneral PopulationGeometryGoalsHeightHome environmentImageImage EnhancementImageryIndividualIndustryLateralLeadLesionLiverLiver diseasesLiver neoplasmsMalignant NeoplasmsMalignant neoplasm of liverManufacturer NameMethodsMonitorObesityOverweightPatientsPhasePopulationPrimary Malignant Neoplasm of LiverPrimary carcinoma of the liver cellsProcessProductionResearchResolutionScreening for Hepatocellular CancerScreening procedureSignal TransductionSonicationStreamStructureSurvival RateSystemTechniquesTechnologyTemperatureThickTissuesTransducersUltrasonic TransducerUltrasonographyUniversitiesVirus DiseasesWidthWorkabdominal wallbasecancer riskcontrast imagingdata accessdesignexperienceflexible electronicshuman studyimprovedin vivointerestnovelopen sourcepreventprogramsprototypescreeningsignal processingtransmission processvolcanovoltage
项目摘要
Our project has two fundamental goals: 1) develop modular large aperture, high channel count arrays with
associated electronics and make these modules widely available to the academic community, and 2) use these
arrays to improve abdominal ultrasound (US) for the diagnosis of liver cancer, particularly for difficult to image
patients. The overall 5-year relative survival rate for patients with primary liver cancer is 16%. Imaging is used
to monitor liver disease resulting from viral infections or cirrhosis and to detect a transition to malignancy, and
ultrasound is the only recommended method for screening such patients at risk for cancer. Yet, in patients with
an abdominal wall thickness greater than 2.5 cm, only 33% of lesions were detected. More than 2/3 of
Americans are now overweight or obese and larger channel count arrays and larger array footprints will
improve imaging within this population and improve the detection of small lesions in the general population.
Our approach addresses improved resolution (large aperture and bandwidth), sensitivity (single crystal
transducers), high frame rate for super-resolution imaging (hundreds of frame/sec feasible), yield (array is
composed of high yield modules), and image contrast (new switching capabilities enable new beamformation
methods). Lateral US resolution is inversely proportional to the transducer aperture and consequently,
improved resolution requires an increased number of transducer elements and electronic channels as well as
advanced beam formation methods. Even in the presence of aberrating tissues the contrast achieved from an
extended aperture facilitates the visualization of small structures. We propose to create PIN-PMN-PT array
modules of dimension 16 elements (azimuth) by 32 elements (elevation) which will be combined to form large
arrays. The user selectable ASIC matrices provide the opportunity to select: 512 elements from within a single
module, to combine mirrored elements in elevation or to combine neighboring elements in azimuth or
elevation. As a result, 4096 elements within the large aperture array can simultaneously be addressed from a
programmable scanner. Preliminary work has resulted in the fabrication of prototype array and ASIC modules.
The UC Davis team has been one of the first to produce multi-frequency arrays; USC has pioneered high
frequency arrays and is currently home to Wodnicki (20 years of experience in ultrasound ASIC development
at GE) and will collaborate with us on the development of high channel count arrays; Duke University has
pioneered the development of strategies to use large apertures; Verasonics is the leading manufacturer of
programmable ultrasound systems and will work with us to develop data handling methods and to distribute
components to the ultrasound community; Sonic Concepts will manufacture the resulting arrays; and GE has
offered support as an external advisor on the incorporation of these arrays into other commercial systems.
This unique team will develop the technology, evaluate its use in a human study and will disseminate the
technology.
我们的项目有两个基本目标:1)开发模块化大孔径、高通道数阵列
相关电子产品并使这些模块广泛可供学术界使用,并且 2)使用这些
改善腹部超声(US)诊断肝癌的阵列,特别是难以成像的肝癌
患者。原发性肝癌患者的总体 5 年相对生存率为 16%。 使用成像
监测由病毒感染或肝硬化引起的肝脏疾病并检测向恶性肿瘤的转变,以及
超声波是筛查此类癌症风险患者的唯一推荐方法。 然而,在患者中
腹壁厚度大于2.5厘米时,仅33%的病变被检出。超过2/3的
美国人现在超重或肥胖,更大的通道数阵列和更大的阵列占地面积将
改善该人群的成像并改善一般人群中小病变的检测。
我们的方法解决了提高分辨率(大孔径和带宽)、灵敏度(单晶
传感器),超分辨率成像的高帧速率(数百帧/秒可行),产量(阵列是
由高产量模块组成)和图像对比度(新的切换功能启用新的波束形成
方法)。横向 US 分辨率与换能器孔径成反比,因此,
提高分辨率需要增加传感器元件和电子通道的数量以及
先进的波束形成方法。即使存在畸变组织,对比度也能通过
扩大的孔径有利于小型结构的可视化。我们建议创建 PIN-PMN-PT 阵列
尺寸为 16 个元素(方位角)乘以 32 个元素(仰角)的模块将组合形成大型
数组。用户可选择的 ASIC 矩阵提供了选择的机会: 从单个矩阵中选择 512 个元素
模块,以组合仰角的镜像元素或组合方位角的相邻元素或
海拔。因此,大孔径阵列内的 4096 个元件可以同时从一个
可编程扫描仪。初步工作已完成原型阵列和 ASIC 模块的制造。
加州大学戴维斯分校的团队是最早生产多频阵列的团队之一;南加州大学开创了高
频率阵列,目前是 Wodnicki 的所在地(拥有 20 年超声 ASIC 开发经验)
GE)并将与我们合作开发高通道数阵列;杜克大学有
率先开发了使用大光圈的策略; Verasonics 是领先的制造商
可编程超声系统并将与我们合作开发数据处理方法并分发
超声界的组成部分; Sonic Concepts 将制造最终的阵列;和通用电气有
作为外部顾问,为将这些阵列纳入其他商业系统提供支持。
这个独特的团队将开发该技术,评估其在人体研究中的使用,并将传播该技术
技术。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Katherine W Ferrara其他文献
Katherine W Ferrara的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Katherine W Ferrara', 18)}}的其他基金
High Resolution Ultrasound in Interventional Radiology
介入放射学中的高分辨率超声
- 批准号:
10584507 - 财政年份:2022
- 资助金额:
$ 66.74万 - 项目类别:
High Resolution Ultrasound in Interventional Radiology
介入放射学中的高分辨率超声
- 批准号:
10448971 - 财政年份:2022
- 资助金额:
$ 66.74万 - 项目类别:
Quantitative volumetric ultrasonic and photoacoustic tomography
定量体积超声和光声断层扫描
- 批准号:
10374704 - 财政年份:2021
- 资助金额:
$ 66.74万 - 项目类别:
Quantitative volumetric ultrasonic and photoacoustic tomography
定量体积超声和光声断层扫描
- 批准号:
10541211 - 财政年份:2021
- 资助金额:
$ 66.74万 - 项目类别:
相似海外基金
Nonlinear Acoustics for the conditioning monitoring of Aerospace structures (NACMAS)
用于航空航天结构调节监测的非线性声学 (NACMAS)
- 批准号:
10078324 - 财政年份:2023
- 资助金额:
$ 66.74万 - 项目类别:
BEIS-Funded Programmes
ORCC: Marine predator and prey response to climate change: Synthesis of Acoustics, Physiology, Prey, and Habitat In a Rapidly changing Environment (SAPPHIRE)
ORCC:海洋捕食者和猎物对气候变化的反应:快速变化环境中声学、生理学、猎物和栖息地的综合(蓝宝石)
- 批准号:
2308300 - 财政年份:2023
- 资助金额:
$ 66.74万 - 项目类别:
Continuing Grant
University of Salford (The) and KP Acoustics Group Limited KTP 22_23 R1
索尔福德大学 (The) 和 KP Acoustics Group Limited KTP 22_23 R1
- 批准号:
10033989 - 财政年份:2023
- 资助金额:
$ 66.74万 - 项目类别:
Knowledge Transfer Partnership
User-controllable and Physics-informed Neural Acoustics Fields for Multichannel Audio Rendering and Analysis in Mixed Reality Application
用于混合现实应用中多通道音频渲染和分析的用户可控且基于物理的神经声学场
- 批准号:
23K16913 - 财政年份:2023
- 资助金额:
$ 66.74万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Combined radiation acoustics and ultrasound imaging for real-time guidance in radiotherapy
结合辐射声学和超声成像,用于放射治疗的实时指导
- 批准号:
10582051 - 财政年份:2023
- 资助金额:
$ 66.74万 - 项目类别:
Comprehensive assessment of speech physiology and acoustics in Parkinson's disease progression
帕金森病进展中言语生理学和声学的综合评估
- 批准号:
10602958 - 财政年份:2023
- 资助金额:
$ 66.74万 - 项目类别:
The acoustics of climate change - long-term observations in the arctic oceans
气候变化的声学——北冰洋的长期观测
- 批准号:
2889921 - 财政年份:2023
- 资助金额:
$ 66.74万 - 项目类别:
Studentship
Collaborative Research: Estimating Articulatory Constriction Place and Timing from Speech Acoustics
合作研究:从语音声学估计发音收缩位置和时间
- 批准号:
2343847 - 财政年份:2023
- 资助金额:
$ 66.74万 - 项目类别:
Standard Grant
Flow Physics and Vortex-Induced Acoustics in Bio-Inspired Collective Locomotion
仿生集体运动中的流动物理学和涡激声学
- 批准号:
DGECR-2022-00019 - 财政年份:2022
- 资助金额:
$ 66.74万 - 项目类别:
Discovery Launch Supplement
Collaborative Research: Estimating Articulatory Constriction Place and Timing from Speech Acoustics
合作研究:从语音声学估计发音收缩位置和时间
- 批准号:
2141275 - 财政年份:2022
- 资助金额:
$ 66.74万 - 项目类别:
Standard Grant