1/2 Cross modal integration of molecular and physiological networks in ASD
1/2 自闭症谱系障碍中分子和生理网络的跨模态整合
基本信息
- 批准号:9479597
- 负责人:
- 金额:$ 114.26万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-09-21 至 2022-07-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAnimal ModelArchitectureAreaArray tomographyAstrocytesAutistic DisorderAutopsyBehaviorBiologicalBiological AssayBiological ModelsBiophysicsBrainBrain DiseasesCRISPR/Cas technologyCalciumCellsChromatinCognitive deficitsCollaborationsComplexComputer SimulationDataDevelopmentDisease modelElectric StimulationElectrodesEngineeringEquilibriumFaceFunctional disorderGene ExpressionGene ProteinsGenesGeneticGenetic EngineeringGenetic HeterogeneityGenetic ModelsGenetic RiskGenetic TranscriptionGenetic VariationGenomicsGlutamatesHumanHuman GeneticsImageImpairmentIn VitroIndividualInterneuronsInvestigationLeadLinkMeasuresMental disordersMessenger RNAMethodologyModalityModelingMolecularMorphologyMutationNervous System PhysiologyNeurobiologyNeurogliaNeuronal PlasticityNeuronsOpticsOrganoidsPathway interactionsPatientsPatternPhagocytosisPhenotypePhysicsPhysiologicalPhysiologyPrincipal InvestigatorPropertyProsencephalonRadialRattusResearch PersonnelRiskRodentRodent ModelRoleStem cellsStructureSynapsesSynaptosomesSyndromeSystemTestingTissuesUntranslated RNAWorkautism spectrum disorderbasebiophysical modelcell typedensitydisorder riskexperimental studyfetalflexibilityfunctional genomicsgenetic approachgenetic associationgenetic risk factorgenetic varianthigh riskhuman diseasehuman stem cellsimmunocytochemistryin vitro Modelin vivoin vivo Modelinduced pluripotent stem cellinnovationmigrationmolecular pathologynetwork modelsneurogenesisneuropsychiatric disordernovelnovel strategiesoptogeneticspatch clamppredictive modelingprogenitorrelating to nervous systemrisk variantsequence learningsingle cell analysissynaptogenesistheoriesthree dimensional cell culturetranscriptome sequencingvirtual reality
项目摘要
Genetic approaches have been successful in identifying causal genetic factors, both common and rare, that
contribute to risk for autism spectrum disorder (ASD), providing a crucial starting point for mechanistic
neurobiological investigations. However, moving towards an integrated mechanistic understanding of ASD at
a molecular, cellular, and circuit level faces substantial challenges, such as extreme genetic heterogeneity
and the lack of causal frameworks with which to connect different levels of analysis of nervous system
function in model systems or patients. Nearly a decade ago, we reasoned that gene and protein networks
would provide an organizing framework for understanding heterogeneous psychiatric disease genetic risk in a
unified context and inform disease modeling; indeed there is now substantial evidence supporting
convergence of major effect risk genes during mid-fetal cortical development. Furthermore, related functional
genomic studies, including in those with a major gene form of ASD (dup)15q11-13, show shared patterns of
transcriptional and chromatin dysregulation in post-mortem ASD brain, further supporting biological
convergence. Where and how this occurs, and what biological mechanism(s) it reflects is not known. To
address this, we propose an ambitious project that addresses several major challenges in establishing causal
linkages between genetic risk and CNS structure and function in ASD. The work proposed in this multi-PI U01
involves a team of four principal investigators and co-investigators from UCLA and Stanford with the expertise
necessary to perform this work using state of the art methodologies, ranging from developing and
characterizing in vitro models of human brain development, stem cells, physiology, genomics, physics, and
behavior. Through close collaboration, we will develop and analyze in vitro human stem cell based models
that are differentiated from induced pluripotent stem cells and assembled into organized 3D brain cultures
called human forebrain spheroids (hFS). These hFS contain the major cell classes of the developing
forebrain, including progenitors, radial glia, cortical interneurons, glutamatergic neurons, and non-reactive
astrocytes, and form functional synapses. We will model the effects of six major effect ASD risk loci in hFS
with molecular, genomic, and physiological analyses to assess convergence at each level of analysis. We will
also conduct comparisons of physiology using three rodent models based on the same genes modeled in vitro
with the aim of integrating phenotypes to develop predictive models and compare with in vivo rodent models.
We will analyze the relationship of molecular alterations and basic cellular and synaptic features with potential
emergent or dynamic network features in control-derived hFS and compare these features with hFS harboring
ASD risk mutations and test a subset of causal relationships based on network model predictions. Completion
of these aims will lead to a more clear understanding of the power and limitations of model systems and
computational models, while uncovering potential areas of convergence in different genetic forms of ASD.
遗传方法已经成功地识别了致病的遗传因素,包括常见的和罕见的
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
DANIEL H GESCHWIND其他文献
DANIEL H GESCHWIND的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('DANIEL H GESCHWIND', 18)}}的其他基金
Project 2: Impact of H1/H2 haplotypes on cellular disease-associated phenotypes driven by FTD-causing MAPT mutations
项目 2:H1/H2 单倍型对 FTD 引起的 MAPT 突变驱动的细胞疾病相关表型的影响
- 批准号:
10834336 - 财政年份:2023
- 资助金额:
$ 114.26万 - 项目类别:
UCLA High-Throughput Neuropsychiatric Disorder Phenotyping Center (UCLA HT-NPC)
加州大学洛杉矶分校高通量神经精神疾病表型中心 (UCLA HT-NPC)
- 批准号:
10643541 - 财政年份:2023
- 资助金额:
$ 114.26万 - 项目类别:
Uncovering the Genetic Mechanisms of the Chromosome 17q21.31 Tau Haplotype on Neurodegeneration Risk in FTD and PSP
揭示染色体 17q21.31 Tau 单倍型对 FTD 和 PSP 神经变性风险的遗传机制
- 批准号:
10789246 - 财政年份:2023
- 资助金额:
$ 114.26万 - 项目类别:
Project 2: Impact of H1/H2 haplotypes on cellular disease-associated phenotypes driven by FTD-causing MAPT mutations
项目 2:H1/H2 单倍型对 FTD 引起的 MAPT 突变驱动的细胞疾病相关表型的影响
- 批准号:
10295518 - 财政年份:2021
- 资助金额:
$ 114.26万 - 项目类别:
Uncovering the genetic mechanisms of the Chromosome 17q21.31 Tau haplotype on neurodegeneration risk in FTD and PSP
揭示染色体 17q21.31 Tau 单倍型对 FTD 和 PSP 神经变性风险的遗传机制
- 批准号:
10902613 - 财政年份:2021
- 资助金额:
$ 114.26万 - 项目类别:
Uncovering the genetic mechanisms of the Chromosome 17q21.31 Tau haplotype on neurodegeneration risk in FTD and PSP
揭示染色体 17q21.31 Tau 单倍型对 FTD 和 PSP 神经变性风险的遗传机制
- 批准号:
10295512 - 财政年份:2021
- 资助金额:
$ 114.26万 - 项目类别:
High-throughput Modeling of Autism Risk Genes using Zebrafish - DIVERSITY SUPPLEMENT
使用斑马鱼对自闭症风险基因进行高通量建模 - 多样性补充
- 批准号:
10818861 - 财政年份:2020
- 资助金额:
$ 114.26万 - 项目类别:
High-throughput modeling of autism risk genes using zebrafish
使用斑马鱼进行自闭症风险基因的高通量建模
- 批准号:
10478187 - 财政年份:2020
- 资助金额:
$ 114.26万 - 项目类别:
High-throughput modeling of autism risk genes using zebrafish
使用斑马鱼进行自闭症风险基因的高通量建模
- 批准号:
10121604 - 财政年份:2020
- 资助金额:
$ 114.26万 - 项目类别:
High-throughput modeling of autism risk genes using zebrafish
使用斑马鱼进行自闭症风险基因的高通量建模
- 批准号:
10264069 - 财政年份:2020
- 资助金额:
$ 114.26万 - 项目类别:
相似海外基金
Quantification of Neurovasculature Changes in a Post-Hemorrhagic Stroke Animal-Model
出血性中风后动物模型中神经血管变化的量化
- 批准号:
495434 - 财政年份:2023
- 资助金额:
$ 114.26万 - 项目类别:
Small animal model for evaluating the impacts of cleft lip repairing scar on craniofacial growth and development
评价唇裂修复疤痕对颅面生长发育影响的小动物模型
- 批准号:
10642519 - 财政年份:2023
- 资助金额:
$ 114.26万 - 项目类别:
Bioactive Injectable Cell Scaffold for Meniscus Injury Repair in a Large Animal Model
用于大型动物模型半月板损伤修复的生物活性可注射细胞支架
- 批准号:
10586596 - 财政年份:2023
- 资助金额:
$ 114.26万 - 项目类别:
A Comparison of Treatment Strategies for Recovery of Swallow and Swallow-Respiratory Coupling Following a Prolonged Liquid Diet in a Young Animal Model
幼年动物模型中长期流质饮食后吞咽恢复和吞咽呼吸耦合治疗策略的比较
- 批准号:
10590479 - 财政年份:2023
- 资助金额:
$ 114.26万 - 项目类别:
Diurnal grass rats as a novel animal model of seasonal affective disorder
昼夜草鼠作为季节性情感障碍的新型动物模型
- 批准号:
23K06011 - 财政年份:2023
- 资助金额:
$ 114.26万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Longitudinal Ocular Changes in Naturally Occurring Glaucoma Animal Model
自然发生的青光眼动物模型的纵向眼部变化
- 批准号:
10682117 - 财政年份:2023
- 资助金额:
$ 114.26万 - 项目类别:
A whole animal model for investigation of ingested nanoplastic mixtures and effects on genomic integrity and health
用于研究摄入的纳米塑料混合物及其对基因组完整性和健康影响的整体动物模型
- 批准号:
10708517 - 财政年份:2023
- 资助金额:
$ 114.26万 - 项目类别:
A Novel Large Animal Model for Studying the Developmental Potential and Function of LGR5 Stem Cells in Vivo and in Vitro
用于研究 LGR5 干细胞体内外发育潜力和功能的新型大型动物模型
- 批准号:
10575566 - 财政年份:2023
- 资助金额:
$ 114.26万 - 项目类别:
Elucidating the pathogenesis of a novel animal model mimicking chronic entrapment neuropathy
阐明模拟慢性卡压性神经病的新型动物模型的发病机制
- 批准号:
23K15696 - 财政年份:2023
- 资助金额:
$ 114.26万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
The effect of anti-oxidant on swallowing function in an animal model of dysphagia
抗氧化剂对吞咽困难动物模型吞咽功能的影响
- 批准号:
23K15867 - 财政年份:2023
- 资助金额:
$ 114.26万 - 项目类别:
Grant-in-Aid for Early-Career Scientists