An open-source software suite for processing glycomics and glycoproteomics mass spectral data
用于处理糖组学和糖蛋白质组学质谱数据的开源软件套件
基本信息
- 批准号:9391486
- 负责人:
- 金额:$ 41.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-08-14 至 2020-07-31
- 项目状态:已结题
- 来源:
- 关键词:AdoptionAlgorithmsChondroitin SulfatesClientCommunitiesComplexComputer softwareCore FacilityDataData AnalysesData SetDevelopmentDissociationElectron TransportElectronsEngineeringEnvironmentFourier transform ion cyclotron resonanceGenerationsGenesGlycopeptidesGlycoproteinsGlycosaminoglycansHeparitin SulfateImageryIndividualInternationalInternetIsomerismKeratan SulfateLibrariesMass Spectrum AnalysisMethodsModernizationOutputPeptidesPolysaccharidesProblem SolvingProcessProteomicsPublic DomainsPublicationsResearchResourcesRunningSamplingSoftware ToolsStructureTechnologyTranslatingVendorVisualanalytical methodbasebiomedical scientistcohortcommercializationcomputerized data processingdata acquisitionexperimental studyglycoproteomicsgraphical user interfaceinstrumentinterestliquid chromatography mass spectrometryopen sourceoperationpolymerizationprogramsrepositorysoftware developmenttandem mass spectrometrytool
项目摘要
Analytical methods for liquid chromatography-mass spectrometry (LC-MS) of glycans and glycopepeptides are
mature and available to biomedical scientists with access to mass spectrometry instruments. The primary
barrier to the adoption of such methods by non-glycoscientists is the lack of tools for processing the raw LC-
MS data, evaluating the results, and results visualizations that present those findings in a systematic fashion.
Academic research groups have defined algorithmic approaches for interpretation mass spectra in the
glycoscience domain. Despite this effort, there remains a paucity of practical, user accessible tools for
processing glycan and glycopeptide mass spectral data. The first problem is that public domain and
commercial proteomics workflows make peptide-specific assumptions that exclude released glycans and
glycosylated peptides. The second is that available glycoscience mass spectral analysis tools, do not address
the full scope of data processing needed for high throughput LC-MS data sets. Thus, users with access to
mass spectrometry through local proteomics core facilities do not have access to adequate software tools for
processing the liquid-chromatography-mass spectrometry (LC-MS) datasets. The result is a serious bottleneck
for dissemination and use of glycoscience LC-MS methods in biomedicine.
We have developed three software programs for glycoscience mass spectrometry that we now propose to
engineer and disseminate as accessible solutions for biomedical scientists. GlycReSoft processes glycan
profiling and integrated omics of glycoproteins. GAGfinder is a second generation algorithm for sequencing
glycosaminoglycans from electron activated dissociation (ExD) tandem mass spectra. GlycoDeNovo
determines branched glycan topologies and linkage configurations from ExD tandem mass spectra. We
propose to engineer and disseminate open source pipelines for processing glycan and glycopeptide LC-MS
data. This will include all modules necessary to process vendor-independent mass spectrometry data, perform
LC-MS profiling, tandem mass spectrometry assignments and generate publication quality graphical outputs.
We will deliver software that builds on available data standards and MS processing libraries. The software will
use modern glycan representation standards and communicate with the international glycan structure
repository and namespace (GlyTouCan). Users will have the option of running the software as a desktop
application, through a server, or as a GRITS Toolbox plugin. The software tools will be available open source
through a Github repository. In Aim 1, we will develop our GlycReSoft program and related tools into a
complete solution for glycomics and glycoproteomics LC-MS data analysis. In Aim 2, we will develop
GAGfinder software into a complete solution for sequencing glycosaminoglycans from ExD tandem mass
spectra. In Aim 3, we will develop a pipeline based on our GlycoDeNovo software for sequencing N- and O-
glycans.
聚糖和糖肽的液相色谱-质谱(LC-MS)分析方法
生物医学科学家可以使用质谱分析仪器。主
非糖科学家采用这种方法的障碍是缺乏处理原始LC的工具,
MS数据,评估结果,以及以系统方式呈现这些发现的结果可视化。
学术研究小组已经定义了用于解释质谱的算法方法,
糖科学领域。尽管做出了这些努力,但仍然缺乏实用的、用户可访问的工具,
处理聚糖和糖肽质谱数据。第一个问题是,公共领域和
商业蛋白质组学工作流程做出肽特异性假设,排除释放的聚糖,
糖基化肽第二个是现有的糖科学质谱分析工具,不解决
高通量LC-MS数据集所需的全范围数据处理。因此,可以访问
通过当地蛋白质组学核心设施进行的质谱分析无法获得足够的软件工具,
处理液相色谱-质谱(LC-MS)数据集。其结果是严重的瓶颈
在生物医学中传播和使用糖科学LC-MS方法。
我们已经开发了三种用于糖科学质谱分析的软件程序,我们现在建议
设计和传播作为生物医学科学家可访问的解决方案。GlycReSoft处理聚糖
糖蛋白的分析和整合组学。GAGfinder是第二代测序算法
电子活化解离(ExD)串联质谱中的糖胺聚糖。GlycoDeNovo
根据ExD串联质谱确定支链聚糖拓扑结构和连接构型。我们
建议设计和传播用于处理聚糖和糖肽LC-MS的开源管道
数据这将包括处理独立于供应商的质谱数据所需的所有模块,
LC-MS分析、串联质谱分配和生成出版质量图形输出。
我们将提供基于可用数据标准和MS处理库的软件。该软件将
使用现代聚糖表示标准,并与国际聚糖结构进行沟通
存储库和命名空间(GlyTouCan)。用户可以选择将该软件作为桌面运行
应用程序,通过服务器,或作为GRITS插件。软件工具将开放源代码
通过Github仓库。在目标1中,我们将开发GlycReSoft程序和相关工具,
糖组学和糖蛋白质组学LC-MS数据分析的完整解决方案。在目标2中,我们将开发
将GAGfinder软件整合到一个完整的解决方案中,用于对ExD串联质谱中的糖胺聚糖进行测序
谱在目标3中,我们将开发一个基于GlycoDeNovo软件的管道,用于测序N-和O-
聚糖
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(1)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
JOSEPH ZAIA其他文献
JOSEPH ZAIA的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('JOSEPH ZAIA', 18)}}的其他基金
Methods for measuring matrisome molecule similarity during disease processes
测量疾病过程中基质体分子相似性的方法
- 批准号:
10582128 - 财政年份:2022
- 资助金额:
$ 41.5万 - 项目类别:
Methods for measuring matrisome molecule similarity during disease processes
测量疾病过程中基质体分子相似性的方法
- 批准号:
10580774 - 财政年份:2022
- 资助金额:
$ 41.5万 - 项目类别:
Methods for measuring matrisome molecule similarity during disease processes
测量疾病过程中基质体分子相似性的方法
- 批准号:
10330789 - 财政年份:2022
- 资助金额:
$ 41.5万 - 项目类别:
Methods for determination of glycoprotein glycosylation similarities among disease states
确定疾病状态之间糖蛋白糖基化相似性的方法
- 批准号:
10194553 - 财政年份:2019
- 资助金额:
$ 41.5万 - 项目类别:
A Thermo-Fisher Scientific Q-Exactive HF Mass Spectrometry System
Thermo-Fisher Scientific Q-Exactive HF 质谱系统
- 批准号:
9075665 - 财政年份:2016
- 资助金额:
$ 41.5万 - 项目类别:
Software for automated interpretation of heparan sulfate tandem mass spectra
用于自动解释硫酸乙酰肝素串联质谱的软件
- 批准号:
9337106 - 财政年份:2015
- 资助金额:
$ 41.5万 - 项目类别:
Software for automated interpretation of heparan sulfate tandem mass spectra
用于自动解释硫酸乙酰肝素串联质谱的软件
- 批准号:
9144851 - 财政年份:2015
- 资助金额:
$ 41.5万 - 项目类别:
Software for automated interpretation of heparan sulfate tandem mass spectra
用于自动解释硫酸乙酰肝素串联质谱的软件
- 批准号:
8984998 - 财政年份:2015
- 资助金额:
$ 41.5万 - 项目类别:
Quantitative profiling of glycosaminoglycans from breast tumor tissue arrays
乳腺肿瘤组织阵列中糖胺聚糖的定量分析
- 批准号:
9079438 - 财政年份:2014
- 资助金额:
$ 41.5万 - 项目类别:
Quantitative profiling of glycosaminoglycans from breast tumor tissue arrays
乳腺肿瘤组织阵列中糖胺聚糖的定量分析
- 批准号:
8889224 - 财政年份:2014
- 资助金额:
$ 41.5万 - 项目类别:
相似海外基金
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
$ 41.5万 - 项目类别:
Research Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
$ 41.5万 - 项目类别:
Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
- 批准号:
2338816 - 财政年份:2024
- 资助金额:
$ 41.5万 - 项目类别:
Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
$ 41.5万 - 项目类别:
Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
- 批准号:
2348261 - 财政年份:2024
- 资助金额:
$ 41.5万 - 项目类别:
Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
- 批准号:
2348346 - 财政年份:2024
- 资助金额:
$ 41.5万 - 项目类别:
Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
- 批准号:
2348457 - 财政年份:2024
- 资助金额:
$ 41.5万 - 项目类别:
Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
$ 41.5万 - 项目类别:
Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 41.5万 - 项目类别:
Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
- 批准号:
2339669 - 财政年份:2024
- 资助金额:
$ 41.5万 - 项目类别:
Continuing Grant














{{item.name}}会员




