The Continuing Challenge of Carbapenemases in K. pneumoniae: KPC-2 & NDM-1

肺炎克雷伯菌中碳青霉烯酶的持续挑战:KPC-2

基本信息

项目摘要

After more than 30 years of using β-lactamase inhibitors (BLIs) in the treatment of patients, pressing questions still remain at the forefront of our clinical efforts. Although, the value of β-lactam/BLI combinations (e.g., piperacillin/tazobactam) was well-established by the 1990s, the rapid emergence of β-lactamases that hydrolyzed expanded spectrum cephalosporins, carbapenems and were resistant to inactivation by BLIs created a global crisis in antimicrobial chemotherapy and propelled the quest for a novel class of inhibitors, the diazabicyclooctanes (DBOs). In addition to the extended spectrum β-lactamases (ESBLs), the major challenges to overcome in Klebsiella pneumoniae are the serine carbapenemases (e.g., KPC-2, OXA-48) and the metallo- β-lactamases (MBLs) (e.g., NDM-1, VIM and IMP). Fortunately, avibactam (AVI), a DBO BLI, inactivates KPC-2 and OXA-48; the efficacy of AVI against MBLs is absent. Our investigations in the previous grant cycle awarded us with unprecedented and frightening insights. We were painfully reminded that we cannot anticipate β-lactamase evolution; the diversity in amino acid sequences that nature can yield and their impact on catalytic activity and resistance are unpredictable. We found to our dismay that KPC-2 β-lactamase variants expressed in Escherichia coli DH10B with the amino acid substitutions, S130G, K234R, and R220M conferred resistance to ampicillin-AVI. Moreover, we discovered that a single amino acid substitution in VIM-24 (R228L) confers enhanced resistance to ceftazidime and cefepime. We came to the inevitable conclusion that: i) resistance to AVI was present before this BLI was released; and ii) MBLs can expand their substrate profile and enhance cephalosporin resistance much like the class A and C extended-spectrum β-lactamases (ESBLs). In this Merit application, our goals are to: 1) continue to probe the structural and mechanistic basis for resistance to AVI in KPC; 2) learn how novel substrate specificity evolves in KPC and NDM carbapenemases. We will apply for the first time complementary structural methods (x-ray crystallography, NMR, and Double Electron Electron Resonance, DEER) to help us understand how structure activity relationship are defined in carbapenemases with the intent that these new insights will lead to new approaches in BLI design. In addition, recent computational analyses of KPC-2 β-lactamase molecular dynamics predict that “hydrophobic networks” contribute to the structural integrity and allosteric signaling of KPC-2 and other class A β-lactamases. This novel insight defines our third goal: 3) if these hydrophobic networks contribute to allosteric signaling, can allosteric inhibitors offer new opportunities for BLI design. The unrelenting pace of resistance makes it imperative that we understand fundamental biochemical interactions in order to find BLIs that act by novel mechanisms. Our multidisciplinary approach to studying carbapenemases will allow us to anticipate how new mutations will effect BLI and cephem catalysis and anticipate novel resistance phenotypes. We also propose that we will discover important conformational changes upon AVI binding and uncover networks that may be involved in allosteric signaling. If this is confirmed, disruption of these “hydrophobic networks” will open an alternative approach to overcoming resistance and lead to new BLIs.
在使用β-内酰胺酶抑制剂(BLI)治疗患者30多年后,紧迫的问题 仍然是我们临床工作的前沿。虽然,β-内酰胺/BLI组合的价值(例如, 哌拉西林/他唑巴坦)在20世纪90年代得到了很好的确立, 水解的广谱头孢菌素类、碳青霉烯类,对BLI产生的灭活具有抗性 全球性的抗微生物化疗危机,并推动了对一类新型抑制剂的探索, 二氮杂双环辛烷(DBO)。除了超广谱β-内酰胺酶(ESBLs), 在肺炎克雷伯氏菌中要克服的是丝氨酸碳青霉烯酶(例如,KPC-2,OXA-48)和金属- β-内酰胺酶(MBL)(例如,NDM-1、Vim和IMP)。幸运的是,阿维巴坦(AVI),一种DBO BLI,可灭活KPC-2 和OXA-48; AVI对MBL的疗效不存在。 我们在上一个资助周期的调查给了我们前所未有的和可怕的见解。 我们痛苦地提醒我们,我们不能预测β-内酰胺酶的进化; 自然界可以产生的序列及其对催化活性和抗性的影响是不可预测的。我们发现 令人沮丧的是,在大肠杆菌DH 10 B中表达的KPC-2 β-内酰胺酶变体具有氨基酸 S130 G、K234 R和R220 M取代赋予对氨苄青霉素-AVI的抗性。此外,我们发现, Vim-24(R228 L)中的单个氨基酸取代赋予对头孢他啶和头孢吡肟增强的抗性。 我们得出了一个不可避免的结论,即:i)在BLI发布之前,对AVI的抵抗力已经存在;以及ii) MBL可以扩大其底物谱,并增强头孢菌素耐药性,就像A类和C类一样 超广谱β-内酰胺酶(ESBLs)。在这个Merit应用程序中,我们的目标是:1)继续探索 KPC中抗AVI结构和机制基础; 2)了解新底物特异性如何在 KPC和NDM碳青霉烯酶。我们将首次应用互补结构方法(X射线 晶体学,NMR和双电子电子共振,DEER)来帮助我们了解结构如何 在碳青霉烯酶中定义活性关系,目的是这些新的见解将导致新的 BLI设计中的方法。此外,最近KPC-2 β-内酰胺酶分子动力学的计算分析 预测“疏水网络”有助于KPC-2的结构完整性和变构信号传导, 其他A类β-内酰胺酶。这一新的见解定义了我们的第三个目标:3)如果这些疏水网络有助于 变构抑制剂能否为BLI的设计提供新的机会。无情的步伐 为了找到BLI,我们必须了解基本的生物化学相互作用 通过新的机制运作。 我们研究碳青霉烯酶的多学科方法将使我们能够预测新的突变是如何发生的。 将影响BLI和头孢烯催化作用,并预测新的耐药表型。我们还提议, 发现AVI结合后的重要构象变化,并揭示可能参与的网络 变构信号如果这一点得到证实,这些“疏水网络”的破坏将打开一个替代方案, 克服阻力的方法,并导致新的BLI。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

ROBERT A. BONOMO其他文献

ROBERT A. BONOMO的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('ROBERT A. BONOMO', 18)}}的其他基金

Oral Metallo-Beta-Lactamase Inhibitors: Exploiting Reaction Mechanisms
口服金属-β-内酰胺酶抑制剂:利用反应机制
  • 批准号:
    10618795
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
Veterans Affairs - Translational Education and Mentoring (VA-TEAM) Center
退伍军人事务部 - 转化教育和指导 (VA-TEAM) 中心
  • 批准号:
    10553091
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
Veterans Affairs - Translational Education and Mentoring (VA-TEAM) Center
退伍军人事务部 - 转化教育和指导 (VA-TEAM) 中心
  • 批准号:
    10231804
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
Veterans Affairs - Translational Education and Mentoring (VA-TEAM) Center
退伍军人事务部 - 转化教育和指导 (VA-TEAM) 中心
  • 批准号:
    10341217
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
Oral Metallo-Beta-Lactamase Inhibitors: Exploiting Reaction Mechanisms
口服金属-β-内酰胺酶抑制剂:利用反应机制
  • 批准号:
    10383142
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
Developing Metallo-Beta-Lactamase Inhibitors
开发金属-β-内酰胺酶抑制剂
  • 批准号:
    9023565
  • 财政年份:
    2015
  • 资助金额:
    --
  • 项目类别:
Molecular Epidemiology of Carbapenem-Resistant Klebsiella pneumoniae
耐碳青霉烯类肺炎克雷伯菌的分子流行病学
  • 批准号:
    8975488
  • 财政年份:
    2015
  • 资助金额:
    --
  • 项目类别:
Developing Metallo-Beta-Lactamase Inhibitors
开发金属-β-内酰胺酶抑制剂
  • 批准号:
    9203628
  • 财政年份:
    2015
  • 资助金额:
    --
  • 项目类别:
Molecular Epidemiology of Carbapenem-Resistant Klebsiella pneumoniae
耐碳青霉烯类肺炎克雷伯菌的分子流行病学
  • 批准号:
    9098583
  • 财政年份:
    2015
  • 资助金额:
    --
  • 项目类别:
The Continuing Challenge of Carbapenemases in K. pneumoniae: KPC-2 & NDM-1
肺炎克雷伯菌中碳青霉烯酶的持续挑战:KPC-2
  • 批准号:
    8441988
  • 财政年份:
    2013
  • 资助金额:
    --
  • 项目类别:

相似海外基金

Cerebral infarction treatment strategy using collagen-like "triple helix peptide" containing functional amino acid sequence
含功能氨基酸序列的类胶原“三螺旋肽”治疗脑梗塞策略
  • 批准号:
    23K06972
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Establishment of a screening method for functional microproteins independent of amino acid sequence conservation
不依赖氨基酸序列保守性的功能性微生物蛋白筛选方法的建立
  • 批准号:
    23KJ0939
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Effects of amino acid sequence and lipids on the structure and self-association of transmembrane helices
氨基酸序列和脂质对跨膜螺旋结构和自缔合的影响
  • 批准号:
    19K07013
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Construction of electron-transfer amino acid sequence probe with an interaction for protein and cell
蛋白质与细胞相互作用的电子转移氨基酸序列探针的构建
  • 批准号:
    16K05820
  • 财政年份:
    2016
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Development of artificial antibody of anti-bitter taste receptor using random amino acid sequence library
利用随机氨基酸序列库开发抗苦味受体人工抗体
  • 批准号:
    16K08426
  • 财政年份:
    2016
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
The aa15-17 amino acid sequence in the terminal protein domain of HBV polymerase as a viral factor affect-ing in vivo as well as in vitro replication activity of the virus.
HBV聚合酶末端蛋白结构域中的aa15-17氨基酸序列作为影响病毒体内和体外复制活性的病毒因子。
  • 批准号:
    25461010
  • 财政年份:
    2013
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Amino acid sequence analysis of fossil proteins using mass spectrometry
使用质谱法分析化石蛋白质的氨基酸序列
  • 批准号:
    23654177
  • 财政年份:
    2011
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Challenging Exploratory Research
Precise hybrid synthesis of glycoprotein through amino acid sequence-specific introduction of oligosaccharide followed by enzymatic transglycosylation reaction
通过氨基酸序列特异性引入寡糖,然后进行酶促糖基转移反应,精确杂合合成糖蛋白
  • 批准号:
    22550105
  • 财政年份:
    2010
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Estimating selection on amino-acid sequence polymorphisms in Drosophila
果蝇氨基酸序列多态性选择的估计
  • 批准号:
    NE/D00232X/1
  • 财政年份:
    2006
  • 资助金额:
    --
  • 项目类别:
    Research Grant
Construction of a neural network for detecting novel domains from amino acid sequence information only
构建仅从氨基酸序列信息检测新结构域的神经网络
  • 批准号:
    16500189
  • 财政年份:
    2004
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了