Mechanical Regulation of Ultra-Sensitivity in E. Coli Flagellar Motors
大肠杆菌鞭毛马达超灵敏的机械调节
基本信息
- 批准号:9398711
- 负责人:
- 金额:$ 25.52万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-09-15 至 2021-08-31
- 项目状态:已结题
- 来源:
- 关键词:Antibiotic ResistanceBacteriaBindingBiologicalCathetersCellsCessation of lifeChemotaxisClinicalDataDevelopmentDevicesEscherichia coliExhibitsFilamentFoundationsGoalsHealthcare SystemsHospitalsInfection preventionKnowledgeLiquid substanceMechanicsMediatingMissionMolecularMolecular ConformationMotorPublic HealthRegulationResearchResistance to infectionRoleRotationSignal TransductionSolidStimulusSurfaceSwitching ComplexTestingTheoretical modelTherapeuticTimeUnited States National Institutes of HealthUrinary tract infectionWorkacquired drug resistancebasecell motilitycombatdesignexpectationexperimental studyextracellularinnovationmechanical forcemechanotransductionmutantnovelpreventresponse
项目摘要
PROJECT ABSTRACT
Swarming motility, exhibited by many motile species of bacteria, has been implicated in the rapid invasion
of hosts during urinary tract infections (UTIs). Annually, UTIs result in several thousand deaths in the US alone
and represent a significant load on the public healthcare system. Swarming motility is substrate-associated and
is driven by bacterial flagellar motors that rotate extracellular, helical filaments to generate thrust on the cell-
body. Although chemotaxis is not required for swarming, the functioning of a molecular switch that enables
reversals in the direction of motor-rotation is indispensable. The switch is activated by CheY-P, an intracellular
response-regulator that is regulated by the chemotaxis network. Upon CheY-P-binding, cooperative
interactions within the multi-subunit switch-complex drive concerted transitions from counterclockwise (CCW)
to clockwise (CW) conformations with increasing likelihood, resulting in changes in the direction of rotation. Our
recent results indicate that flagellar motors sense mechanical forces, arising from contact with solid substrates,
and that leads to the inhibition of switching. In a short time the motor adapts to these forces and recovers the
ability to reverse directions. However, the molecular underpinnings responsible for adaptation remain unclear.
Thus, there is a critical need to determine how the switch adapts to mechanical stimuli to promote swarming.
Without such knowledge, the potential to capitalize on antivirulence strategies as therapeutic approaches to
combat swarming-mediated host-invasion and antibiotic resistance will likely remain limited. Our long-term goal
is to contribute toward the development of new clinically useful antivirulence strategies that target bacterial
swarming and colonization. Our overall objective in this application is to determine the molecular mechanisms
whereby the switch adapts perfectly to mechanical signals and promotes swarming. Our central hypothesis is
that motor-mechanosensing (sensing of mechanical signals) results in the tuning of ultra-sensitivity through the
modulation of allosteric and cooperative interactions within the switch. The rationale for the proposed work is
that a determination of the mechanism of mechanical control of ultra-sensitivity is likely to provide a conceptual
framework for the development of strategies to interfere with switch adaptation, and to mitigate swarming. At
the completion of the proposed research, it is our expectation to have quantitatively explained the mechanisms
underlying switch-adaptation and modulation of ultra-sensitivity by mechanical forces. Results are expected to
have an important positive impact because a detailed understanding of switching near substrates will provide a
strong foundation for novel substrate-design in biomedical devices, including catheters, which will target the
motor-switch to inhibit swarming.
项目摘要
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Pushkar Prakash Lele其他文献
Pushkar Prakash Lele的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Pushkar Prakash Lele', 18)}}的其他基金
Biophysical determinants of chemotaxis in Helicobacter pylori
幽门螺杆菌趋化性的生物物理决定因素
- 批准号:
10556394 - 财政年份:2022
- 资助金额:
$ 25.52万 - 项目类别:
Biophysical determinants of chemotaxis in Helicobacter pylori
幽门螺杆菌趋化性的生物物理决定因素
- 批准号:
10367389 - 财政年份:2022
- 资助金额:
$ 25.52万 - 项目类别:
Biophysical determinants of chemotaxis in Helicobacter pylori
幽门螺杆菌趋化性的生物物理决定因素
- 批准号:
10799248 - 财政年份:2022
- 资助金额:
$ 25.52万 - 项目类别:
Mechanical Regulation of Ultra-Sensitivity in E. Coli Flagellar Motors
大肠杆菌鞭毛马达超灵敏的机械调节
- 批准号:
10002253 - 财政年份:2017
- 资助金额:
$ 25.52万 - 项目类别:
相似国自然基金
Segmented Filamentous Bacteria激活宿主免疫系统抑制其拮抗菌 Enterobacteriaceae维持菌群平衡及其机制研究
- 批准号:81971557
- 批准年份:2019
- 资助金额:65.0 万元
- 项目类别:面上项目
电缆细菌(Cable bacteria)对水体沉积物有机污染的响应与调控机制
- 批准号:51678163
- 批准年份:2016
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
NPBactID - Differential binding of peptoid functionalized nanoparticles to bacteria for identifying specific strains
NPBactID - 类肽功能化纳米粒子与细菌的差异结合,用于识别特定菌株
- 批准号:
EP/Y029542/1 - 财政年份:2024
- 资助金额:
$ 25.52万 - 项目类别:
Fellowship
Evaluation and application of binding ability between mycotoxin and lactic acid bacteria cell wall components using kinetic analysis.
动力学分析评价霉菌毒素与乳酸菌细胞壁成分结合能力及应用
- 批准号:
22K05515 - 财政年份:2022
- 资助金额:
$ 25.52万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Structural and functional studies of iron uptake ATP-binding cassette transporters (ABC transporters) in Gram-negative bacteria
革兰氏阴性菌中铁摄取 ATP 结合盒转运蛋白(ABC 转运蛋白)的结构和功能研究
- 批准号:
20K22561 - 财政年份:2020
- 资助金额:
$ 25.52万 - 项目类别:
Grant-in-Aid for Research Activity Start-up
Investigation of virulence mechanism of Gram-positive bacteria regulated by various RNA binding proteins
不同RNA结合蛋白调控革兰氏阳性菌毒力机制的研究
- 批准号:
19H03466 - 财政年份:2019
- 资助金额:
$ 25.52万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Xenophagy recognizes bacteria through carbohydrate-binding ubiquitin ligase complex
异体吞噬通过碳水化合物结合泛素连接酶复合物识别细菌
- 批准号:
18K07109 - 财政年份:2018
- 资助金额:
$ 25.52万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Study on binding mechanism of lactic acid bacteria to the host via anchorless proteins
乳酸菌通过锚定蛋白与宿主结合机制的研究
- 批准号:
18K05405 - 财政年份:2018
- 资助金额:
$ 25.52万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Understanding DNA-binding by type IV pilins: key event during transformation in naturally competent bacteria
了解 IV 型菌毛蛋白的 DNA 结合:自然感受态细菌转化过程中的关键事件
- 批准号:
MR/P022197/1 - 财政年份:2017
- 资助金额:
$ 25.52万 - 项目类别:
Research Grant
Development of novel caries suppression method targeting polymer binding domain of plaque constituting bacteria
开发针对牙菌斑构成细菌的聚合物结合域的新型防龋方法
- 批准号:
15K20591 - 财政年份:2015
- 资助金额:
$ 25.52万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
The differing biological fates of DNA minor groove-binding (MGB) antibiotics in Gram-negative and Gram-Positive bacteria.
DNA 小沟结合 (MGB) 抗生素在革兰氏阴性和革兰氏阳性细菌中的不同生物学命运。
- 批准号:
BB/K019600/1 - 财政年份:2014
- 资助金额:
$ 25.52万 - 项目类别:
Research Grant
Domoic acid-binding substance found in bacteria isolated from causative diatom of domoic acid
从软骨藻酸致病硅藻中分离出的细菌中发现软骨藻酸结合物质
- 批准号:
23658175 - 财政年份:2011
- 资助金额:
$ 25.52万 - 项目类别:
Grant-in-Aid for Challenging Exploratory Research