Evaluating the Bilayer-Couple Model of Outer Membrane Vesicle Biogenesis Using Novel Asymmetric Membrane Templates
使用新型不对称膜模板评估外膜囊泡生物发生的双层耦合模型
基本信息
- 批准号:9199067
- 负责人:
- 金额:$ 18.06万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-01-01 至 2018-12-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAntibiotic ResistanceArchitectureAreaBacteriaBiochemicalBiogenesisBiologicalBiophysical ProcessCaliberCell CommunicationCellsCharacteristicsCommunicationComplementComputer SimulationDevelopmentDiseaseDrug Delivery SystemsEquilibriumFluorescence MicroscopyFoundationsGoalsGram-Negative BacteriaHealthHorizontal Gene TransferImmune EvasionImmune systemIn VitroLipidsLiposomesMediatingMembraneMembrane BiologyMembrane LipidsMicrobial BiofilmsMicrofluidicsModelingMolecularMonitorMono-SOrganismPathogenesisPhospholipidsPhysiologicalPlayPopulationProcessPseudomonasPseudomonas aeruginosaQuinolonesResearchRoleSignal TransductionSorting - Cell MovementStructureSystemTechniquesTechnologyTestingTimeToxinVesicleVirulence Factorsantimicrobialbiophysical modelcomputerized toolsexperimental studyflexibilityhuman diseaseinsightintercalationkillingsmicrobialmolecular dynamicsnovelnovel strategiesparticlephysical propertypreferencepublic health relevanceresponsesimulationsmall moleculesynthetic constructtraffickingvaccine development
项目摘要
DESCRIPTION (provided by applicant)
Bacterial secretion has long been recognized as an essential facet of microbial pathogenesis and human disease. One important but poorly understood system, which is ubiquitous among Gram-negative organisms, involves packaging cargo into small outer membrane derived vesicles (OMVs). Numerous virulence factors have been found to be transported in this way, and delivery by OMVs often results in increased potency. OMVs have also been implicated in the killing of host cells and competing bacteria, avoidance of and interference with the immune system, horizontal gene transfer mediating antibiotic resistance, biofilm formation, and trafficking small molecule communication signals. Remarkably, little is known about how these versatile structures are formed or how their cargo is selected and packaged. To address this, our team proposed the Bilayer-Couple Model where intercalation of self-produced small molecules into the outer membrane drives the induction of membrane curvature to initiate OMV formation. This is a biochemical/biophysical model that followed the discovery by our team and colleagues that the Pseudomonas Quinolone Signal (PQS) is packaged within and drives biogenesis of OMVs in Pseudomonas aeruginosa. In developing this model, we encountered a problem that is common in membrane biology: while all biological membranes contain asymmetric lipid distributions (leaflet vs. leaflet), it was impossible to generate a useful quantiy of in vitro liposomes matching these characteristics. Thus, weakly-relevant surrogates had to be used. Recently, our team has developed a novel approach for constructing synthetic asymmetric vesicles possessing a bilayer architecture that is more physiologically accurate than any other available system. Our approach utilizes microfluidic technology to build vesicles with controlled size, membrane asymmetry, uniformity, and luminal content. These vesicles are the ideal system to experimentally test the predictions of the Bilayer-Couple Model. To gain a greater physical insight in complement to experiments, we also propose to create the first-ever atomistic molecular dynamics and mesoscopic dissipative particle dynamics simulation of the bacterial outer membrane to discover the specific interactions between PQS and physiological-relevant asymmetric membranes. In particular, this model will help elucidate the detailed dynamics of PQS insertion into the outer membrane, its orientation PQS vs. surrounding lipids in the leaflet and whether its own physical properties direct its observed packaging into OMVs. Using leading edge experimental and computational tools, this proposal will address fundamental aspects of OMV formation, including (1) how PQS interacts with and alters the structure of the outer membrane, (2) whether these interactions are sufficient to initiate OMV formation, and (3) whether PQS itself may contribute to its accumulation in OMVs as cargo. The fundamental mechanistic foundations established through this study will have implications in many aspects of health research, potentially enabling applied topics such as vaccine development and drug delivery, for which OMVs are rapidly becoming exciting candidates.
描述(由申请人提供)
长期以来,细菌分泌一直被认为是微生物致病和人类疾病的一个重要方面。一个重要但知之甚少的系统,在革兰氏阴性生物中普遍存在,涉及将货物包装成小的外膜衍生囊泡(OMV)。已发现许多毒力因子是通过这种方式运输的,而OMV的输送往往会导致效力的增强。OMVS还与杀死宿主细胞和竞争细菌、避免和干扰免疫系统、水平基因转移介导抗生素耐药性、生物被膜形成和运输小分子通讯信号有关。值得注意的是,人们对这些多功能结构是如何形成的,或者它们的货物是如何选择和包装的知之甚少。为了解决这个问题,我们的团队提出了双层耦合模型,在该模型中,自产生的小分子插入外膜驱动膜曲率的诱导,以启动OMV的形成。这是一个生化/生物物理模型,此前我们的团队和同事发现,假单胞菌喹诺酮信号(PQS)被包装在铜绿假单胞菌中,并驱动OMV的生物发生。在开发这个模型时,我们遇到了膜生物学中常见的一个问题:尽管所有生物膜都含有不对称的脂质分布(叶状物与叶状物),但不可能产生与这些特性相匹配的大量体外脂质体。因此,必须使用相关性较弱的代理人。最近,我们的团队开发了一种新的方法来构建具有双层结构的合成不对称囊泡,这种结构在生理上比任何其他可用的系统都更准确。我们的方法利用微流控技术来构建具有可控大小、膜不对称性、均匀性和管腔含量的囊泡。这些囊泡是对双层耦合模型的预测进行实验测试的理想系统。为了更好地补充实验的物理意义,我们还提出了首次建立细菌外膜的原子分子动力学和介观耗散粒子动力学模拟,以发现PQS与生理相关的不对称膜之间的特定相互作用。特别是,这个模型将有助于阐明PQS插入外膜的详细动力学,它在小叶中的取向与周围脂质的关系,以及它自身的物理性质是否指导其观察到的包装进入OMV。利用前沿的实验和计算工具,这一建议将讨论OMV形成的基本方面,包括(1)PQS如何与外膜相互作用并改变其结构,(2)这些相互作用是否足以启动OMV的形成,以及(3)PQS本身是否可能有助于其作为货物在OMV中积累。通过这项研究建立的基本机制基础将对卫生研究的许多方面产生影响,可能使疫苗开发和药物输送等应用主题成为可能,而OMV正迅速成为这些领域令人兴奋的候选者。
项目成果
期刊论文数量(9)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Molecular conformation affects the interaction of the Pseudomonas quinolone signal with the bacterial outer membrane.
分子构象影响假单胞菌喹诺酮信号与细菌外膜的相互作用。
- DOI:10.1074/jbc.ac118.006844
- 发表时间:2019
- 期刊:
- 影响因子:0
- 作者:Li,Ao;Schertzer,JeffreyW;Yong,Xin
- 通讯作者:Yong,Xin
Membrane Distribution of the Pseudomonas Quinolone Signal Modulates Outer Membrane Vesicle Production in Pseudomonas aeruginosa.
- DOI:10.1128/mbio.01034-17
- 发表时间:2017-08-08
- 期刊:
- 影响因子:6.4
- 作者:Florez C;Raab JE;Cooke AC;Schertzer JW
- 通讯作者:Schertzer JW
Membrane mechanical properties of synthetic asymmetric phospholipid vesicles.
- DOI:10.1039/c6sm01349j
- 发表时间:2016-09-13
- 期刊:
- 影响因子:3.4
- 作者:Lu L;Doak WJ;Schertzer JW;Chiarot PR
- 通讯作者:Chiarot PR
Pseudomonas Quinolone Signal-Induced Outer Membrane Vesicles Enhance Biofilm Dispersion in Pseudomonas aeruginosa.
- DOI:10.1128/msphere.01109-20
- 发表时间:2020-11-25
- 期刊:
- 影响因子:4.8
- 作者:Cooke AC;Florez C;Dunshee EB;Lieber AD;Terry ML;Light CJ;Schertzer JW
- 通讯作者:Schertzer JW
Dewetting-induced formation and mechanical properties of synthetic bacterial outer membrane models (GUVs) with controlled inner-leaflet lipid composition.
- DOI:10.1039/c9sm00223e
- 发表时间:2019-05
- 期刊:
- 影响因子:3.4
- 作者:Sepehr Maktabi;Jeffrey W. Schertzer;P. Chiarot
- 通讯作者:Sepehr Maktabi;Jeffrey W. Schertzer;P. Chiarot
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jeffrey Schertzer其他文献
Jeffrey Schertzer的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jeffrey Schertzer', 18)}}的其他基金
Pathogen Synergy Through Cross-Species Induction of Outer Membrane Vesicle Biogenesis
通过跨物种诱导外膜囊泡生物发生的病原体协同作用
- 批准号:
10043365 - 财政年份:2020
- 资助金额:
$ 18.06万 - 项目类别:
Pathogen Synergy Through Cross-Species Induction of Outer Membrane Vesicle Biogenesis
通过跨物种诱导外膜囊泡生物发生的病原体协同作用
- 批准号:
10204938 - 财政年份:2020
- 资助金额:
$ 18.06万 - 项目类别:
Evaluating the Bilayer-Couple Model of Outer Membrane Vesicle Biogenesis Using Novel Asymmetric Membrane Templates
使用新型不对称膜模板评估外膜囊泡生物发生的双层耦合模型
- 批准号:
9016995 - 财政年份:2016
- 资助金额:
$ 18.06万 - 项目类别:
相似海外基金
Ecological and Evolutionary Drivers of Antibiotic Resistance in Patients
患者抗生素耐药性的生态和进化驱动因素
- 批准号:
EP/Y031067/1 - 财政年份:2024
- 资助金额:
$ 18.06万 - 项目类别:
Research Grant
Collaborative Research: Leveraging the interactions between carbon nanomaterials and DNA molecules for mitigating antibiotic resistance
合作研究:利用碳纳米材料和 DNA 分子之间的相互作用来减轻抗生素耐药性
- 批准号:
2307222 - 财政年份:2024
- 资助金额:
$ 18.06万 - 项目类别:
Standard Grant
Molecular Epidemiology of Antibiotic Resistance in Clostridioides difficile
艰难梭菌抗生素耐药性的分子流行病学
- 批准号:
502587 - 财政年份:2024
- 资助金额:
$ 18.06万 - 项目类别:
Collaborative Research: Leveraging the interactions between carbon nanomaterials and DNA molecules for mitigating antibiotic resistance
合作研究:利用碳纳米材料和 DNA 分子之间的相互作用来减轻抗生素耐药性
- 批准号:
2307223 - 财政年份:2024
- 资助金额:
$ 18.06万 - 项目类别:
Standard Grant
The roles of a universally conserved DNA-and RNA-binding domain in controlling MRSA virulence and antibiotic resistance
普遍保守的 DNA 和 RNA 结合域在控制 MRSA 毒力和抗生素耐药性中的作用
- 批准号:
MR/Y013131/1 - 财政年份:2024
- 资助金额:
$ 18.06万 - 项目类别:
Research Grant
Determining structural dynamics of membrane proteins in their native environment: focus on bacterial antibiotic resistance
确定膜蛋白在其天然环境中的结构动力学:关注细菌抗生素耐药性
- 批准号:
MR/X009580/1 - 财政年份:2024
- 资助金额:
$ 18.06万 - 项目类别:
Fellowship
CAREER: Systems Microbiology and InterdiscipLinary Education for Halting Environmental Antibiotic Resistance Transmission (SMILE HEART)
职业:阻止环境抗生素耐药性传播的系统微生物学和跨学科教育(SMILE HEART)
- 批准号:
2340818 - 财政年份:2024
- 资助金额:
$ 18.06万 - 项目类别:
Continuing Grant
Reinforcing the battle at the bacterial cell wall: Structure-guided characterization and inhibition of beta-lactam antibiotic resistance signalling mechanisms
加强细菌细胞壁的战斗:β-内酰胺抗生素耐药信号机制的结构引导表征和抑制
- 批准号:
480022 - 财政年份:2023
- 资助金额:
$ 18.06万 - 项目类别:
Operating Grants
The spread of antibiotic resistance in bacteria-plasmid networks
抗生素耐药性在细菌-质粒网络中的传播
- 批准号:
BB/X010473/1 - 财政年份:2023
- 资助金额:
$ 18.06万 - 项目类别:
Fellowship
An RNA Nanosensor for the Diagnosis of Antibiotic Resistance in M. Tuberculosis
用于诊断结核分枝杆菌抗生素耐药性的 RNA 纳米传感器
- 批准号:
10670613 - 财政年份:2023
- 资助金额:
$ 18.06万 - 项目类别:














{{item.name}}会员




