Evaluating the Bilayer-Couple Model of Outer Membrane Vesicle Biogenesis Using Novel Asymmetric Membrane Templates

使用新型不对称膜模板评估外膜囊泡生物发生的双层耦合模型

基本信息

  • 批准号:
    9016995
  • 负责人:
  • 金额:
    $ 21.93万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2016
  • 资助国家:
    美国
  • 起止时间:
    2016-01-01 至 2017-12-31
  • 项目状态:
    已结题

项目摘要

 DESCRIPTION (provided by applicant) Bacterial secretion has long been recognized as an essential facet of microbial pathogenesis and human disease. One important but poorly understood system, which is ubiquitous among Gram-negative organisms, involves packaging cargo into small outer membrane derived vesicles (OMVs). Numerous virulence factors have been found to be transported in this way, and delivery by OMVs often results in increased potency. OMVs have also been implicated in the killing of host cells and competing bacteria, avoidance of and interference with the immune system, horizontal gene transfer mediating antibiotic resistance, biofilm formation, and trafficking small molecule communication signals. Remarkably, little is known about how these versatile structures are formed or how their cargo is selected and packaged. To address this, our team proposed the Bilayer-Couple Model where intercalation of self-produced small molecules into the outer membrane drives the induction of membrane curvature to initiate OMV formation. This is a biochemical/biophysical model that followed the discovery by our team and colleagues that the Pseudomonas Quinolone Signal (PQS) is packaged within and drives biogenesis of OMVs in Pseudomonas aeruginosa. In developing this model, we encountered a problem that is common in membrane biology: while all biological membranes contain asymmetric lipid distributions (leaflet vs. leaflet), it was impossible to generate a useful quantiy of in vitro liposomes matching these characteristics. Thus, weakly-relevant surrogates had to be used. Recently, our team has developed a novel approach for constructing synthetic asymmetric vesicles possessing a bilayer architecture that is more physiologically accurate than any other available system. Our approach utilizes microfluidic technology to build vesicles with controlled size, membrane asymmetry, uniformity, and luminal content. These vesicles are the ideal system to experimentally test the predictions of the Bilayer-Couple Model. To gain a greater physical insight in complement to experiments, we also propose to create the first-ever atomistic molecular dynamics and mesoscopic dissipative particle dynamics simulation of the bacterial outer membrane to discover the specific interactions between PQS and physiological-relevant asymmetric membranes. In particular, this model will help elucidate the detailed dynamics of PQS insertion into the outer membrane, its orientation PQS vs. surrounding lipids in the leaflet and whether its own physical properties direct its observed packaging into OMVs. Using leading edge experimental and computational tools, this proposal will address fundamental aspects of OMV formation, including (1) how PQS interacts with and alters the structure of the outer membrane, (2) whether these interactions are sufficient to initiate OMV formation, and (3) whether PQS itself may contribute to its accumulation in OMVs as cargo. The fundamental mechanistic foundations established through this study will have implications in many aspects of health research, potentially enabling applied topics such as vaccine development and drug delivery, for which OMVs are rapidly becoming exciting candidates.
 描述(由申请人提供) 长期以来,细菌分泌物被认为是微生物致病和人类疾病的重要方面。一种重要但知之甚少的系统,其在革兰氏阴性生物中普遍存在,涉及将货物包装到小的外膜衍生囊泡(OMV)中。已经发现许多毒力因子以这种方式运输,并且通过OMV递送通常导致增加的效力。OMV还涉及杀死宿主细胞和竞争细菌、避免和干扰免疫系统、介导抗生素抗性的水平基因转移、生物膜形成和运输小分子通讯信号。值得注意的是,人们对这些多功能结构是如何形成的,以及它们的货物是如何选择和包装的知之甚少。为了解决这个问题,我们的团队提出了双层耦合模型,其中将自产的小分子插入外膜中,驱动膜弯曲的诱导,以启动OMV的形成。这是一个生物化学/生物物理模型,遵循我们的团队和同事的发现,即假单胞菌喹诺酮信号(PQS)被包装在铜绿假单胞菌中并驱动OMV的生物发生。在开发该模型时,我们遇到了膜生物学中常见的问题:虽然所有生物膜都含有不对称的脂质分布(小叶与小叶),但不可能产生与这些特征匹配的有用量的体外脂质体。因此,必须使用弱相关的替代品。最近,我们的团队开发了一种新的方法来构建具有双层结构的合成不对称囊泡,这种结构比任何其他可用的系统在生理上都更准确。我们的方法利用微流体技术来构建具有可控尺寸、膜不对称性、均匀性和腔内容物的囊泡。这些囊泡是实验测试双层耦合模型预测的理想系统。为了获得更大的物理洞察力,以补充实验,我们还建议创建有史以来第一个原子分子动力学和介观耗散粒子动力学模拟的细菌外膜,以发现PQS和生理相关的非对称膜之间的特定相互作用。特别是,该模型将有助于阐明PQS插入外膜的详细动力学,其取向PQS与小叶中周围脂质的关系,以及其自身的物理性质是否将其观察到的包装引导到OMV中。利用先进的实验和计算工具,该提案将解决OMV形成的基本方面,包括(1)PQS如何与外膜相互作用并改变外膜的结构,(2)这些相互作用是否足以启动OMV形成,以及(3)PQS本身是否有助于其作为货物在OMV中的积累。通过这项研究建立的基本机制基础将在健康研究的许多方面产生影响,可能使应用主题,如疫苗开发和药物输送,其中OMV正在迅速成为令人兴奋的候选人。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jeffrey Schertzer其他文献

Jeffrey Schertzer的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jeffrey Schertzer', 18)}}的其他基金

Pathogen Synergy Through Cross-Species Induction of Outer Membrane Vesicle Biogenesis
通过跨物种诱导外膜囊泡生物发生的病原体协同作用
  • 批准号:
    10043365
  • 财政年份:
    2020
  • 资助金额:
    $ 21.93万
  • 项目类别:
Pathogen Synergy Through Cross-Species Induction of Outer Membrane Vesicle Biogenesis
通过跨物种诱导外膜囊泡生物发生的病原体协同作用
  • 批准号:
    10204938
  • 财政年份:
    2020
  • 资助金额:
    $ 21.93万
  • 项目类别:
Evaluating the Bilayer-Couple Model of Outer Membrane Vesicle Biogenesis Using Novel Asymmetric Membrane Templates
使用新型不对称膜模板评估外膜囊泡生物发生的双层耦合模型
  • 批准号:
    9199067
  • 财政年份:
    2016
  • 资助金额:
    $ 21.93万
  • 项目类别:

相似海外基金

Ecological and Evolutionary Drivers of Antibiotic Resistance in Patients
患者抗生素耐药性的生态和进化驱动因素
  • 批准号:
    EP/Y031067/1
  • 财政年份:
    2024
  • 资助金额:
    $ 21.93万
  • 项目类别:
    Research Grant
Collaborative Research: Leveraging the interactions between carbon nanomaterials and DNA molecules for mitigating antibiotic resistance
合作研究:利用碳纳米材料和 DNA 分子之间的相互作用来减轻抗生素耐药性
  • 批准号:
    2307222
  • 财政年份:
    2024
  • 资助金额:
    $ 21.93万
  • 项目类别:
    Standard Grant
Molecular Epidemiology of Antibiotic Resistance in Clostridioides difficile
艰难梭菌抗生素耐药性的分子流行病学
  • 批准号:
    502587
  • 财政年份:
    2024
  • 资助金额:
    $ 21.93万
  • 项目类别:
Collaborative Research: Leveraging the interactions between carbon nanomaterials and DNA molecules for mitigating antibiotic resistance
合作研究:利用碳纳米材料和 DNA 分子之间的相互作用来减轻抗生素耐药性
  • 批准号:
    2307223
  • 财政年份:
    2024
  • 资助金额:
    $ 21.93万
  • 项目类别:
    Standard Grant
The roles of a universally conserved DNA-and RNA-binding domain in controlling MRSA virulence and antibiotic resistance
普遍保守的 DNA 和 RNA 结合域在控制 MRSA 毒力和抗生素耐药性中的作用
  • 批准号:
    MR/Y013131/1
  • 财政年份:
    2024
  • 资助金额:
    $ 21.93万
  • 项目类别:
    Research Grant
Determining structural dynamics of membrane proteins in their native environment: focus on bacterial antibiotic resistance
确定膜蛋白在其天然环境中的结构动力学:关注细菌抗生素耐药性
  • 批准号:
    MR/X009580/1
  • 财政年份:
    2024
  • 资助金额:
    $ 21.93万
  • 项目类别:
    Fellowship
CAREER: Systems Microbiology and InterdiscipLinary Education for Halting Environmental Antibiotic Resistance Transmission (SMILE HEART)
职业:阻止环境抗生素耐药性传播的系统微生物学和跨学科教育(SMILE HEART)
  • 批准号:
    2340818
  • 财政年份:
    2024
  • 资助金额:
    $ 21.93万
  • 项目类别:
    Continuing Grant
Reinforcing the battle at the bacterial cell wall: Structure-guided characterization and inhibition of beta-lactam antibiotic resistance signalling mechanisms
加强细菌细胞壁的战斗:β-内酰胺抗生素耐药信号机制的结构引导表征和抑制
  • 批准号:
    480022
  • 财政年份:
    2023
  • 资助金额:
    $ 21.93万
  • 项目类别:
    Operating Grants
The spread of antibiotic resistance in bacteria-plasmid networks
抗生素耐药性在细菌-质粒网络中的传播
  • 批准号:
    BB/X010473/1
  • 财政年份:
    2023
  • 资助金额:
    $ 21.93万
  • 项目类别:
    Fellowship
An RNA Nanosensor for the Diagnosis of Antibiotic Resistance in M. Tuberculosis
用于诊断结核分枝杆菌抗生素耐药性的 RNA 纳米传感器
  • 批准号:
    10670613
  • 财政年份:
    2023
  • 资助金额:
    $ 21.93万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了