Scalable Cancer Genomics via Nanocoding and Sequencing
通过纳米编码和测序实现可扩展的癌症基因组学
基本信息
- 批准号:9318471
- 负责人:
- 金额:$ 37.32万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-08-01 至 2021-01-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAlgorithmsAmazeBedsBioinformaticsBiological AssayBiomedical ResearchCatalogsChargeChemistryChromosomesComplementComputer SimulationCytogenetic AnalysisCytogeneticsDNADNA Sequence RearrangementDataData AnalysesData SetDepositionDevelopmentDevicesDiagnosisDiagnosticEventFluorochromeFutureGenetic MaterialsGenomeGenomic DNAGenomicsGlassGoalsGraphHandHumanImageIndividualInvestmentsLabelLinkMalignant NeoplasmsMapsMethodsMicrofluidicsModelingModificationMolecular ConformationMultiple MyelomaNucleotidesPatient riskPatientsPeripheral Blood Mononuclear CellPlanet EarthPlanetsProcessProtocols documentationResearch InfrastructureResearch PersonnelResolutionRiskSamplingSchemeSiteSpeedStretchingStructureSurfaceSystemTechniquesTechnologyTemperatureTestingThe Cancer Genome AtlasTimeTranslationsVariantVisionbasecancer genomecancer genomicscandidate validationcomputer frameworkcomputer infrastructuredata acquisitionfluorescence microscopegenome analysisgenomic aberrationshigh riskhuman reference genomeneglectnew technologynext generation sequencingnoveloperationprogramspublic health relevancereference genomerestriction enzymesingle moleculetooltumor
项目摘要
DESCRIPTION (provided by applicant): Cancer genomes present amazing puzzles for genomicists to solve in terms of their structures. The size of the data "pieces" for attempting assembly into a complete view are both very large (cytogenetic) and very small (sequence data), often differing in scale by more than a thousand-fold. Add to this, genomic dispersity within a tumor and breakpoints within interspersed repeats, and the puzzle solution grows much more difficult. As such, the aims of this application are to effectively seamlessly scale data "piece" size by a hierarchical framework, through new algorithms and computational pipelines that will engage both long-range physical maps constructed by significant advancements to Nanocoding, and sequence data to create scalable views of cancer genomes that span from nucleotide-to-chromosome. This multipronged project will involve synergistic advancements to: DNA labeling, presentation of very large genomic DNA molecules, scanners for single molecule analytes, and machine vision-all system components that will be informed by advanced bioinformatic analysis techniques, developed for single molecule analysis, and cutting-edge computer simulations of DNA conformations within the devices that will be the foundry for large datasets. This highly integrated system will be aimed at the discovery of novel structural variants within four paired multiple myeloma / normal samples for tabulation of previously undetectable events as candidates for validation and further study. The resulting platform, comprising new single molecule technologies, melded with advanced bioinformatics techniques, portends scalable, comprehensive, fast genome analysis for navigating cancer genomes.
描述(由申请人提供):癌症基因组在其结构方面为基因学家提供了令人惊叹的谜题。试图组装成一个完整的视图的数据“片段”的大小既有非常大的(细胞遗传学的),也有非常小的(序列数据),通常在规模上相差一千倍以上。此外,基因组在肿瘤内的分散性和散布在重复序列中的断裂点,这个谜题的解决变得更加困难。因此,这一应用程序的目标是通过新的算法和计算管道,通过分层框架有效地无缝地扩展数据“块”的大小,这些新算法和计算管道将使用由纳米编码的重大进步构建的远程物理地图,以及用于创建从核苷酸到染色体的癌症基因组的可缩放视图的序列数据。这一多管齐下的项目将涉及以下方面的协同进展:DNA标记、非常大的基因组DNA分子的呈现、单分子分析器的扫描仪和机器视觉--所有系统组件都将得到为单分子分析开发的先进生物信息学分析技术的信息,以及将成为大型数据集铸造基础的设备内DNA构象的尖端计算机模拟。这一高度集成的系统将致力于在四个成对的多发性骨髓瘤/正常样本中发现新的结构变异,用于将以前无法检测到的事件制成表格,作为验证和进一步研究的候选。由此产生的平台,包括新的单分子技术,融合了先进的生物信息学技术,预示着可扩展的、全面的、快速的基因组分析,用于导航癌症基因组。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jian Ma其他文献
Jian Ma的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jian Ma', 18)}}的其他基金
Spatial omics technologies to map the senescent cell microenvironment
空间组学技术绘制衰老细胞微环境图
- 批准号:
10384585 - 财政年份:2021
- 资助金额:
$ 37.32万 - 项目类别:
Spatial omics technologies to map the senescent cell microenvironment
空间组学技术绘制衰老细胞微环境图
- 批准号:
10907057 - 财政年份:2021
- 资助金额:
$ 37.32万 - 项目类别:
Scalable Cancer Genomics via Nanocoding and Sequencing
通过纳米编码和测序实现可扩展的癌症基因组学
- 批准号:
8851351 - 财政年份:2015
- 资助金额:
$ 37.32万 - 项目类别:
Scalable Cancer Genomics via Nanocoding and Sequencing
通过纳米编码和测序实现可扩展的癌症基因组学
- 批准号:
9110904 - 财政年份:2015
- 资助金额:
$ 37.32万 - 项目类别:
Computational Methods for Next-Generation Comparative Genomics
下一代比较基因组学的计算方法
- 批准号:
8697559 - 财政年份:2014
- 资助金额:
$ 37.32万 - 项目类别:
Computational Methods for Next-Generation Comparative Genomics
下一代比较基因组学的计算方法
- 批准号:
10375481 - 财政年份:2014
- 资助金额:
$ 37.32万 - 项目类别:
Computational Methods for Next-Generation Comparative Genomics
下一代比较基因组学的计算方法
- 批准号:
9196052 - 财政年份:2014
- 资助金额:
$ 37.32万 - 项目类别:
Computational Methods for Next-Generation Comparative Genomics
下一代比较基因组学的计算方法
- 批准号:
10595048 - 财政年份:2014
- 资助金额:
$ 37.32万 - 项目类别:
Computational Methods for Next-Generation Comparative Genomics
下一代比较基因组学的计算方法
- 批准号:
9102153 - 财政年份:2014
- 资助金额:
$ 37.32万 - 项目类别:
Computational Methods for Next-Generation Comparative Genomics
下一代比较基因组学的计算方法
- 批准号:
9765970 - 财政年份:2014
- 资助金额:
$ 37.32万 - 项目类别:
相似海外基金
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
$ 37.32万 - 项目类别:
Research Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
$ 37.32万 - 项目类别:
Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
- 批准号:
2338816 - 财政年份:2024
- 资助金额:
$ 37.32万 - 项目类别:
Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
$ 37.32万 - 项目类别:
Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
- 批准号:
2348261 - 财政年份:2024
- 资助金额:
$ 37.32万 - 项目类别:
Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
- 批准号:
2348346 - 财政年份:2024
- 资助金额:
$ 37.32万 - 项目类别:
Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
- 批准号:
2348457 - 财政年份:2024
- 资助金额:
$ 37.32万 - 项目类别:
Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
$ 37.32万 - 项目类别:
Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 37.32万 - 项目类别:
Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
- 批准号:
2339669 - 财政年份:2024
- 资助金额:
$ 37.32万 - 项目类别:
Continuing Grant














{{item.name}}会员




