Computational Methods for Next-Generation Comparative Genomics

下一代比较基因组学的计算方法

基本信息

  • 批准号:
    8697559
  • 负责人:
  • 金额:
    $ 32.16万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2014
  • 资助国家:
    美国
  • 起止时间:
    2014-09-01 至 2017-06-30
  • 项目状态:
    已结题

项目摘要

Whole genome sequencing projects of human and other vertebrates have greatly advanced comparative genomics, which led to novel biological discoveries. Our long-term research goal is to use comparative genomics to elucidate the trajectory of vertebrate genome evolution and the origin of complex traits of different species. Such insights will in turn help us better understand the biology of the human genome. Advances in next-generation sequencing (NGS) technologies have provided us with unprecedented opportunities to tackle this problem. However, the large number of genomes being sequenced and the limitations of genome quality produced by NGS have underlined urgent needs for new computational methods to address several pressing challenges for the new generation of comparative genomic analysis. The objective in this particular application is to develop new computational methods to improve the accuracy of whole- genome comparisons for vertebrate genomes. We have two specific aims: (1) To develop a comparative assembly algorithm to improve vertebrate genomes assembled from NGS data; (2) To develop a probabilistic framework to improve the quality of multiple sequence alignments for vertebrate genomes. Our research plan is innovative because it provides novel algorithms and software tools to systematically improve the foundations for genome comparisons. The research is significant because the methods to be developed will allow researchers to more effectively utilize the new genome sequencing data. The proposed research will have sustained impact even with the increasing number of genomes and the advancement of sequencing technology. By improving the general methodology for next-generation comparative genomics, our work will have a high impact on large-scale genome projects such as G10K and ENCODE. As a result, this innovative project in computational biology will enable advancement in biomedical research.
人类和其他脊椎动物的全基因组测序计划取得了很大进展

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jian Ma其他文献

Jian Ma的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jian Ma', 18)}}的其他基金

Spatial omics technologies to map the senescent cell microenvironment
空间组学技术绘制衰老细胞微环境图
  • 批准号:
    10384585
  • 财政年份:
    2021
  • 资助金额:
    $ 32.16万
  • 项目类别:
Spatial omics technologies to map the senescent cell microenvironment
空间组学技术绘制衰老细胞微环境图
  • 批准号:
    10907057
  • 财政年份:
    2021
  • 资助金额:
    $ 32.16万
  • 项目类别:
Scalable Cancer Genomics via Nanocoding and Sequencing
通过纳米编码和测序实现可扩展的癌症基因组学
  • 批准号:
    8851351
  • 财政年份:
    2015
  • 资助金额:
    $ 32.16万
  • 项目类别:
Scalable Cancer Genomics via Nanocoding and Sequencing
通过纳米编码和测序实现可扩展的癌症基因组学
  • 批准号:
    9110904
  • 财政年份:
    2015
  • 资助金额:
    $ 32.16万
  • 项目类别:
Scalable Cancer Genomics via Nanocoding and Sequencing
通过纳米编码和测序实现可扩展的癌症基因组学
  • 批准号:
    9318471
  • 财政年份:
    2015
  • 资助金额:
    $ 32.16万
  • 项目类别:
Computational Methods for Next-Generation Comparative Genomics
下一代比较基因组学的计算方法
  • 批准号:
    10375481
  • 财政年份:
    2014
  • 资助金额:
    $ 32.16万
  • 项目类别:
Computational Methods for Next-Generation Comparative Genomics
下一代比较基因组学的计算方法
  • 批准号:
    9196052
  • 财政年份:
    2014
  • 资助金额:
    $ 32.16万
  • 项目类别:
Computational Methods for Next-Generation Comparative Genomics
下一代比较基因组学的计算方法
  • 批准号:
    9102153
  • 财政年份:
    2014
  • 资助金额:
    $ 32.16万
  • 项目类别:
Computational Methods for Next-Generation Comparative Genomics
下一代比较基因组学的计算方法
  • 批准号:
    9765970
  • 财政年份:
    2014
  • 资助金额:
    $ 32.16万
  • 项目类别:
Computational Methods for Next-Generation Comparative Genomics
下一代比较基因组学的计算方法
  • 批准号:
    10595048
  • 财政年份:
    2014
  • 资助金额:
    $ 32.16万
  • 项目类别:

相似海外基金

CAREER: Transferring biological networks emergent principles to drone swarm collaborative algorithms
职业:将生物网络新兴原理转移到无人机群协作算法
  • 批准号:
    2339373
  • 财政年份:
    2024
  • 资助金额:
    $ 32.16万
  • 项目类别:
    Continuing Grant
Point-of-care optical spectroscopy platform and novel ratio-metric algorithms for rapid and systematic functional characterization of biological models in vivo
即时光学光谱平台和新颖的比率度量算法,可快速、系统地表征体内生物模型的功能
  • 批准号:
    10655174
  • 财政年份:
    2023
  • 资助金额:
    $ 32.16万
  • 项目类别:
Statistical Inference from Multiscale Biological Data: theory, algorithms, applications
多尺度生物数据的统计推断:理论、算法、应用
  • 批准号:
    EP/Y037375/1
  • 财政年份:
    2023
  • 资助金额:
    $ 32.16万
  • 项目类别:
    Research Grant
Analysis of words: algorithms for biological sequences, music and texts
单词分析:生物序列、音乐和文本的算法
  • 批准号:
    RGPIN-2016-03661
  • 财政年份:
    2021
  • 资助金额:
    $ 32.16万
  • 项目类别:
    Discovery Grants Program - Individual
Analysis of words: algorithms for biological sequences, music and texts
单词分析:生物序列、音乐和文本的算法
  • 批准号:
    RGPIN-2016-03661
  • 财政年份:
    2019
  • 资助金额:
    $ 32.16万
  • 项目类别:
    Discovery Grants Program - Individual
Building flexible biological particle detection algorithms for emerging real-time instrumentation
为新兴实时仪器构建灵活的生物颗粒检测算法
  • 批准号:
    2278799
  • 财政年份:
    2019
  • 资助金额:
    $ 32.16万
  • 项目类别:
    Studentship
CAREER: Microscopy Image Analysis to Aid Biological Discovery: Optics, Algorithms, and Community
职业:显微镜图像分析有助于生物发现:光学、算法和社区
  • 批准号:
    2019967
  • 财政年份:
    2019
  • 资助金额:
    $ 32.16万
  • 项目类别:
    Standard Grant
Analysis of words: algorithms for biological sequences, music and texts
单词分析:生物序列、音乐和文本的算法
  • 批准号:
    RGPIN-2016-03661
  • 财政年份:
    2018
  • 资助金额:
    $ 32.16万
  • 项目类别:
    Discovery Grants Program - Individual
Analysis of words: algorithms for biological sequences, music and texts
单词分析:生物序列、音乐和文本的算法
  • 批准号:
    RGPIN-2016-03661
  • 财政年份:
    2017
  • 资助金额:
    $ 32.16万
  • 项目类别:
    Discovery Grants Program - Individual
Analysis of words: algorithms for biological sequences, music and texts
单词分析:生物序列、音乐和文本的算法
  • 批准号:
    RGPIN-2016-03661
  • 财政年份:
    2016
  • 资助金额:
    $ 32.16万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了