Coding properties of Vibrissal-Responsive Trigeminal Ganglion Neurons
触须响应三叉神经节神经元的编码特性
基本信息
- 批准号:9317557
- 负责人:
- 金额:$ 32.03万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-07-01 至 2020-06-30
- 项目状态:已结题
- 来源:
- 关键词:Afferent NeuronsAnimalsAreaBehaviorBehavior ControlBrainCellsCharacteristicsCodeCoffeeComplexDataDevelopmentDimensionsDiseaseEquationExploratory BehaviorFrequenciesGatekeepingGeneticGeometryGlareGoalsHeadHearingImpairmentInvestigationLaboratoriesLengthLightLocationMechanicsMechanoreceptorsModelingMotionMovementNeocortexNeuronsNeurosciencesPathway interactionsPatientsPatternPhasePhysicsPhysiologicalPositioning AttributeProblem SolvingPropertyRattusReactionResearchRetinal Ganglion CellsRodentRoleRotationSensorySignal TransductionStimulusStrokeStructure of trigeminal ganglionStudy modelsSurfaceSystemTestingThalamic structureTimeTouch sensationTrigeminal SystemVibrissaeWorkawakebarrel cortexbasedesignexperienceexperimental studyganglion cellgraspkinematicsloved onesoptogeneticspredicting responsepublic health relevancereceptorrelating to nervous systemresponsesomatosensorysoundspiral ganglionvibration
项目摘要
DESCRIPTION (provided by applicant): We see because retinal ganglion cells respond to light. We hear because spiral ganglion cells respond to sound. We feel because primary somatosensory neurons respond to "touch." But what is "touch?" Whereas light and sound can be characterized by physical parameters (amplitude, frequency, phase, and polarization), the mechanics of touch, and the manner in which primary sensory neurons encode the parameters of touch, are largely unquantified. This is a glaring gap within the entire field of somatosensation, and it occurs because mechanics are difficult to quantify. To close this gap we will use the rat vibrissal (whisker) system as a model to directly relate the responses of primary sensory neurons to the quantified mechanics of touch. Paralleling the increased use of rodents in genetic and optogenetic research, the rodent vibrissal array has become an increasingly important model for the study of touch and sensorimotor integration. In the past few years, our laboratory has made rapid progress in characterizing vibrissal mechanics, and we are now uniquely positioned to determine how 3D whisker deflections and vibrations are represented in the firing patterns of primary sensory neurons of the trigeminal ganglion (Vg) during natural whisking behavior. The central goal of our investigation is to predict the responses of Vg neurons during both contact and non-contact whisking by appropriately combining 3D dynamic and quasistatic models of mechanical signals. Our three aims move from the outside of the rat inwards, from whisker, to follicle, to Vg neurons. In Aim 1, we will develop models of mechanical coding by the whisker, quantifying the 3D mechanical signals at the vibrissal base during both contact and non-contact whisking. In Aim 2, these models will be used to predict responses of mechanoreceptors within the follicle and thus to identify classes of Vg neurons based on the mechanical transformation they perform. Finally, in Aim 3 we will quantify the responses of Vg neurons during natural whisking behavior in awake animals. Exploiting the cell classes identified in Aim 2, and consistent with the modeling of Aim1, we will test the hypothesis that Vg responses are more linearly correlated with mechanical signals during whisking than they are with the geometry and kinematics of whisking behavior. The proposed work will be the first to record from Vg neurons in awake behaving animals while fully characterizing the mechanical input during both contact and non-contact whisking. We aim to solve a large portion of the "coding problem" for the vibrissal-trigeminal system. Solving this problem will provide a better understanding of what a Vg spike "means" for more central stages of the trigeminal system, including sensory thalamus and barrel cortex.
描述(由应用程序提供):我们看到,因为常规神经节细胞对光的反应。我们之所以听到,是因为螺旋神经节细胞会响应声音。我们感到是因为原发性体感神经元对“触摸”做出了反应。但是什么是“触摸”?虽然光和声音可以以物理参数(振幅,频率,相位和极化)的特征,但触摸的力学以及主要感觉神经元编码触摸参数的方式,在很大程度上没有量化。这是整个体感应领域内的一个明显差距,并且由于力学难以量化而发生。为了缩小此间隙,我们将使用大鼠振动(Whisker)系统作为模型直接将主感觉神经元与量化的触摸机制联系起来。啮齿动物颤动阵列与遗传学和光遗传学研究中的使用增加了使用,已成为触摸和感觉运动整合研究的越来越重要的模型。在过去的几年中,我们的实验室在表征振动力学方面取得了迅速的进步,现在我们在自然搅拌行为期间,在三叉神经节(VG)的原发性神经元的发射模式中,我们处于独特的位置,以确定3D晶须示范和振动如何表示。我们调查的核心目的是通过适当组合机械信号的3D动态模型,预测接触和非接触搅拌过程中VG神经元的响应。我们的三个目标从大鼠的外部向内移动,从晶须,植物到VG神经元。在AIM 1中,我们将通过晶须开发机械编码的模型,并在接触和非接触式搅拌过程中量化纤维化基部的3D机械信号。在AIM 2中,这些模型将用于预测叶子内机制受体的响应,从而根据它们执行的机械转换来识别VG神经元的类别。最后,在AIM 3中,我们将在清醒动物的自然搅拌行为中量化VG神经元的反应。利用AIM 2中确定的细胞类,并与AIM1的建模一致,我们将测试以下假设:VG响应在搅拌过程中与机械信号更线性相关,而不是与质量的几何形状和搅拌行为的运动学相关。拟议的工作将是第一个从VG神经元中记录在清醒的动物中的作品,同时充分表征了在接触和非接触式搅拌过程中的机械输入。我们旨在为葡萄片 - 三络系统解决大部分“编码问题”。解决此问题将更好地了解三叉神经系统(包括感觉丘脑和桶形皮质)的更中心阶段的VG尖峰“含义”。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Mitra J Hartmann其他文献
Mitra J Hartmann的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Mitra J Hartmann', 18)}}的其他基金
Models of rodent facial musculature for the study of active tactile sensing
用于研究主动触觉感知的啮齿动物面部肌肉组织模型
- 批准号:
10435437 - 财政年份:2020
- 资助金额:
$ 32.03万 - 项目类别:
Models of rodent facial musculature for the study of active tactile sensing
用于研究主动触觉感知的啮齿动物面部肌肉组织模型
- 批准号:
10650312 - 财政年份:2020
- 资助金额:
$ 32.03万 - 项目类别:
Models of rodent facial musculature for the study of active tactile sensing
用于研究主动触觉感知的啮齿动物面部肌肉组织模型
- 批准号:
10115151 - 财政年份:2020
- 资助金额:
$ 32.03万 - 项目类别:
Functional Segregation Within the Whisker-Barrel Neuraxis
晶须桶神经轴内的功能分离
- 批准号:
9312907 - 财政年份:2015
- 资助金额:
$ 32.03万 - 项目类别:
Coding properties of Vibrissal-Responsive Trigeminal Ganglion Neurons
触须响应三叉神经节神经元的编码特性
- 批准号:
9761589 - 财政年份:2015
- 资助金额:
$ 32.03万 - 项目类别:
Functional Segregation Within the Whisker-Barrel Neuraxis
晶须桶神经轴内的功能分离
- 批准号:
10424659 - 财政年份:2015
- 资助金额:
$ 32.03万 - 项目类别:
Coding properties of Vibrissal-Responsive Trigeminal Ganglion Neurons
触须响应三叉神经节神经元的编码特性
- 批准号:
9091661 - 财政年份:2015
- 资助金额:
$ 32.03万 - 项目类别:
Functional Segregation Within the Whisker-Barrel Neuraxis
晶须桶神经轴内的功能分离
- 批准号:
9029585 - 财政年份:2015
- 资助金额:
$ 32.03万 - 项目类别:
相似国自然基金
臂旁核区域损伤致长时程“昏迷样”动物模型建立及神经机制研究
- 批准号:81901068
- 批准年份:2019
- 资助金额:20.5 万元
- 项目类别:青年科学基金项目
三江源大型野生食草动物对区域草畜平衡状态影响及管控机制研究
- 批准号:41971276
- 批准年份:2019
- 资助金额:58 万元
- 项目类别:面上项目
基于组蛋白H3K9me3和DNA甲基化修饰协同作用研究早期胚胎发育过程中基因印记区域的调控
- 批准号:31801059
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
使用三代测序技术研究线粒体DNA非编码区域对其DNA复制和转录的调控
- 批准号:31701089
- 批准年份:2017
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
转录因子Msx1与哺乳动物上腭发育的前-后区域化
- 批准号:31771593
- 批准年份:2017
- 资助金额:60.0 万元
- 项目类别:面上项目
相似海外基金
Multiphon imaging for understanding social brain function in tadpoles
多声子成像用于了解蝌蚪的社交脑功能
- 批准号:
10717610 - 财政年份:2023
- 资助金额:
$ 32.03万 - 项目类别:
Targeted Temperature Modulation with Smart Radiometric Monitoring for Effective and Long-Lasting Opioid-Free Pelvic Pain Relief - A Novel Low-Cost, Portable, Tampon-sized Thermal Transfer Device.
通过智能辐射监测进行有针对性的温度调节,可有效且持久地缓解无阿片类药物的盆腔疼痛 - 一种新型低成本、便携式、卫生棉条大小的热转印设备。
- 批准号:
10760002 - 财政年份:2023
- 资助金额:
$ 32.03万 - 项目类别:
Mechanism of ultrasound neuromodulation effects on glucose homeostasis and diabetes
超声神经调节对葡萄糖稳态和糖尿病的影响机制
- 批准号:
10586211 - 财政年份:2023
- 资助金额:
$ 32.03万 - 项目类别:
Social Information Processing in the Vomeronasal System during Active Behavior
主动行为期间犁鼻系统的社会信息处理
- 批准号:
10751849 - 财政年份:2023
- 资助金额:
$ 32.03万 - 项目类别:
Axon guidance through the bifunctional cue WFIKKN2 and its receptors
通过双功能信号 WFIKKN2 及其受体进行轴突引导
- 批准号:
10625432 - 财政年份:2022
- 资助金额:
$ 32.03万 - 项目类别: