Models of rodent facial musculature for the study of active tactile sensing
用于研究主动触觉感知的啮齿动物面部肌肉组织模型
基本信息
- 批准号:10650312
- 负责人:
- 金额:$ 36.13万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-07-01 至 2025-06-30
- 项目状态:未结题
- 来源:
- 关键词:3-DimensionalAfferent NeuronsAnatomic ModelsAnatomyAnimal BehaviorAreaAttentionBackBehaviorBehavioralBilateralBiomechanicsBrainBrain StemBreathingChildhoodComplexDataDeglutitionDeglutition DisordersElderlyElementsExploratory BehaviorExposure toFaceFacial MusclesFeedbackFreedomFrequenciesGoalsHandHeadHistologyInfantInvestigationLaboratoriesLimb structureMRI ScansMagnetic Resonance ImagingMasticationMechanicsModelingMorphologyMotionMotorMotor CortexMovementMusMuscleNervous SystemNeural PathwaysNeuromechanicsNeurosciencesPaperPatternPeriodicityPersonsPlantsQualifyingRattusResearch PersonnelRodentRodent ModelRoleSensorySensory ProcessSideSignal TransductionSmell PerceptionSpeedSystemTactileTestingTimeTouch sensationTrigeminal SystemVibrissaeWorkX-Ray Computed Tomographyactive controlbehavioral studybiomechanical modelcentral pattern generatorexperimental studykinematicsmicroCTmotor controlneuralneuroregulationnovelpreventsensorsensory cortexsimulationsoftware systemssucklingthree-dimensional modeling
项目摘要
Project Summary:
The rodent vibrissal (whisker) system is one of the most widely-used models in neuroscience to study how
information about movement and touch are combined. During many exploratory behaviors, rats and mice
sweep their whiskers back and forth in a rapid, rhythmic motion called “whisking” to actively gather touch
information. Although whisking is rhythmic, rodents can also change how their whiskers move depending on
the desired sensory information, and on their particular behavior. Researchers are nearly able to begin to
“close-the-loop” between movement and touch for the whisker system, except for one critical gap: we do not
yet have a three dimensional (3D) model of rodent facial musculature. Without such a model, we cannot
identify how the rat changes its muscle activity to change whisker motion and acquire particular types of
sensory information. We cannot know which whisker motions are fixed via the biomechanics, versus which
motions the rat can actively control. We cannot fully understand the motor commands sent to the whisker
muscles. The central goal of this proposal is to develop three-dimensional (3D) models of rodent facial
musculature that close this gap. We will first use a novel combination of tactile profilometry, histology, MRI, and
CT-scans to quantify the anatomy of rodent facial muscles and the follicles that hold the whiskers. Using this
anatomy, we will then construct 3D biomechanical models of the whisker muscles and follicles to simulate the
motion of all whiskers. These models will be validated and tested in several different complementary software
systems, and then be used to test eleven specific predictions for the particular function of each whisker-related
muscle. Finally, we will integrate the 3D models of rodent facial muscles with existing models that describe the
sensory, tactile side of whisker motion. These combined muscle-sensory simulations will be directly compared
with active animal behavior. This work takes a step towards closing the loop between motor action and the
sensory data acquired, and helps disentangle the relative roles of biomechanics and neural control during
different types of whisking. The proposed work will inform all levels of study of whisker neural pathways, from
primary sensory neurons to sensory and motor cortical areas, to brainstem regions involved in controlling
whisker motions. More generally, whisking represents a unique window into how volitional control can
modulate or override centrally-patterned movement. The transition between varieties of rhythmic and non-
rhythmic movement has important implications for the coordination of sniffing, breathing, olfaction, chewing,
swallowing, and suckling, and the proposed work could thus shed light on the neuromechanical basis for some
pediatric and geriatric dysphagias.
项目总结:
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
On the intrinsic curvature of animal whiskers.
- DOI:10.1371/journal.pone.0269210
- 发表时间:2023
- 期刊:
- 影响因子:3.7
- 作者:
- 通讯作者:
Comparative morphology of the whiskers and faces of mice (Mus musculus) and rats (Rattus norvegicus).
- DOI:10.1242/jeb.245597
- 发表时间:2023-10-01
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Impaired trigeminal control of ingestive behavior in the Prrxl1-/- mouse is associated with a lemniscal-biased orosensory deafferentation.
- DOI:10.1371/journal.pone.0258837
- 发表时间:2022
- 期刊:
- 影响因子:3.7
- 作者:Resulaj A;Wu J;Hartmann MJZ;Feinstein P;Zeigler HP
- 通讯作者:Zeigler HP
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Mitra J Hartmann其他文献
Mitra J Hartmann的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Mitra J Hartmann', 18)}}的其他基金
Models of rodent facial musculature for the study of active tactile sensing
用于研究主动触觉感知的啮齿动物面部肌肉组织模型
- 批准号:
10435437 - 财政年份:2020
- 资助金额:
$ 36.13万 - 项目类别:
Models of rodent facial musculature for the study of active tactile sensing
用于研究主动触觉感知的啮齿动物面部肌肉组织模型
- 批准号:
10115151 - 财政年份:2020
- 资助金额:
$ 36.13万 - 项目类别:
Functional Segregation Within the Whisker-Barrel Neuraxis
晶须桶神经轴内的功能分离
- 批准号:
9312907 - 财政年份:2015
- 资助金额:
$ 36.13万 - 项目类别:
Coding properties of Vibrissal-Responsive Trigeminal Ganglion Neurons
触须响应三叉神经节神经元的编码特性
- 批准号:
9761589 - 财政年份:2015
- 资助金额:
$ 36.13万 - 项目类别:
Functional Segregation Within the Whisker-Barrel Neuraxis
晶须桶神经轴内的功能分离
- 批准号:
10424659 - 财政年份:2015
- 资助金额:
$ 36.13万 - 项目类别:
Coding properties of Vibrissal-Responsive Trigeminal Ganglion Neurons
触须响应三叉神经节神经元的编码特性
- 批准号:
9091661 - 财政年份:2015
- 资助金额:
$ 36.13万 - 项目类别:
Coding properties of Vibrissal-Responsive Trigeminal Ganglion Neurons
触须响应三叉神经节神经元的编码特性
- 批准号:
9317557 - 财政年份:2015
- 资助金额:
$ 36.13万 - 项目类别:
Functional Segregation Within the Whisker-Barrel Neuraxis
晶须桶神经轴内的功能分离
- 批准号:
9029585 - 财政年份:2015
- 资助金额:
$ 36.13万 - 项目类别:
相似海外基金
How Spinal Afferent Neurons Control Appetite and Thirst
脊髓传入神经元如何控制食欲和口渴
- 批准号:
DP220100070 - 财政年份:2023
- 资助金额:
$ 36.13万 - 项目类别:
Discovery Projects
The mechanisms of the signal transduction from brown adipocytes to afferent neurons and its significance.
棕色脂肪细胞向传入神经元的信号转导机制及其意义。
- 批准号:
23K05594 - 财政年份:2023
- 资助金额:
$ 36.13万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Neurobiology of Intrinsic Primary Afferent Neurons
内在初级传入神经元的神经生物学
- 批准号:
10477437 - 财政年份:2021
- 资助金额:
$ 36.13万 - 项目类别:
GPR35 on Vagal Afferent Neurons as a Peripheral Drug Target for Treating Diet-Induced Obesity
迷走神经传入神经元上的 GPR35 作为治疗饮食引起的肥胖的外周药物靶点
- 批准号:
10315571 - 财政年份:2021
- 资助金额:
$ 36.13万 - 项目类别:
Neurobiology of Intrinsic Primary Afferent Neurons
内在初级传入神经元的神经生物学
- 批准号:
10680037 - 财政年份:2021
- 资助金额:
$ 36.13万 - 项目类别:
Neurobiology of Intrinsic Primary Afferent Neurons
内在初级传入神经元的神经生物学
- 批准号:
10654779 - 财政年份:2021
- 资助金额:
$ 36.13万 - 项目类别:
Neurobiology of Intrinsic Primary Afferent Neurons
内在初级传入神经元的神经生物学
- 批准号:
10275133 - 财政年份:2021
- 资助金额:
$ 36.13万 - 项目类别:
GPR35 on Vagal Afferent Neurons as a Peripheral Drug Target for Treating Diet-Induced Obesity
迷走神经传入神经元上的 GPR35 作为治疗饮食引起的肥胖的外周药物靶点
- 批准号:
10470747 - 财政年份:2021
- 资助金额:
$ 36.13万 - 项目类别:
Roles of mechanosensory ion channels in myenteric intrinsic primary afferent neurons
机械感觉离子通道在肌间固有初级传入神经元中的作用
- 批准号:
RGPIN-2014-05517 - 财政年份:2018
- 资助金额:
$ 36.13万 - 项目类别:
Discovery Grants Program - Individual
Roles of mechanosensory ion channels in myenteric intrinsic primary afferent neurons
机械感觉离子通道在肌间固有初级传入神经元中的作用
- 批准号:
RGPIN-2014-05517 - 财政年份:2017
- 资助金额:
$ 36.13万 - 项目类别:
Discovery Grants Program - Individual