Mapping the protein landscape of the Toxoplasma basal complex
绘制弓形虫基础复合物的蛋白质图谱
基本信息
- 批准号:9387832
- 负责人:
- 金额:$ 23.48万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-05-22 至 2019-04-30
- 项目状态:已结题
- 来源:
- 关键词:ActinsAddressAffectApicalArchitectureAutomobile DrivingBiologicalBiological ProcessBiotinBiotinylationBypassCell Division ProcessCell divisionCellsCentrosomeChronicCluster AnalysisComplexComprehensionCongenital AbnormalityCytoskeletonDataDaughterDefectDevelopmentDiseaseDrug TargetingDrug resistanceEncephalitisEpitopesFission YeastFutureGenerationsGenesGoalsImmune systemIn VitroInfectionKnock-outLigaseLytic PhaseMaintenanceMammalian CellMass Spectrum AnalysisMembraneModelingMolecularMonitorMorphologyMothersMusMyosin ATPaseNatureNutrientParasitesPathogenesisPathologyPatternPositioning AttributeProcessProtein-Protein Interaction MapProteinsProteomeRecruitment ActivityRegimenRoleSolubilitySpecificityStratum BasaleStructureStructure-Activity RelationshipSystemTestingTherapeuticToxoplasmaToxoplasma gondiiToxoplasmosisVacuoleWorkbaseconstrictiondaughter celldesignexperimental studyfoodborne infectionhuman diseasein vivoinsightinterestmembrane skeletonmutantnew therapeutic targetnext generationnovelnovel therapeuticsprotein complexscaffoldspatiotemporalstemuptake
项目摘要
Summary
Apicomplexan parasites are responsible for severe human diseases. Drug resistance and/or poor specificity
are constantly undermining therapeutic regimens to treat these diseases. In order to identify new drug targets,
the P.I.'s lab focuses on deepening the understanding of cell biological processes wherein the parasite differs
from its host using Toxoplasma gondii as model apicomplexan. In this proposal they will address such distinct
structure: the basal complex (BC), which sits at the posterior end of the unique cortical membrane skeleton of
these parasites. Historically, interest in the BC stems from its function as the contractile ring driving cell
division. Basal complex contraction is powered by an as yet undefined mechanism independent of actin-
myosin setting it apart from the host. More recently, the BC has also been associated with other processes
such as assembly of the tubulovesicular intravacuolar network (IVN), which operates as an exchanger between
parasite and host cell and is additionally essential to establish a chronic infection. Contractile rings in other
systems are composed of 125+ proteins, yet only 22 BC proteins are known. To decipher the molecular
mechanisms behind the BC's diverse functions, it is proposed to assemble its complete parts list through an in
vivo proximity-based biotinylation approach (BioID). Since BioID provides short-distance interaction information
in the native complex inside the parasite, a topical model of BC architecture is within reach. To that end half
the known BC components will be tagged as baits in BioID. Proof of principle experiments already generated
several new insights underscoring the feasibility of this approach. Quantitative mass spectrometry data will be
used to assemble a protein-protein interaction (PPI) map, which is expected to identify both clusters within the
basal complex and nodes that make connections with many components. Clusters are expected to align with
different compartments observed by (ultra)structural studies. Nodes will highlight potential key organizers of
(sub)structures, which makes them good targets for functional studies. To maximize the depth of biological
insights that can be realistically achieved under this proposal, 10 key candidates will be prioritized based on
PPI map position and biological signature. Their spatiotemporal dynamics throughout parasite development
and localization within the BC will be tracked by auto-fluorescent and/or epitope tags. Dynamical changes likely
align with different assembly steps and/or functions of the BC. Furthermore, 5 candidates among the 10
primary picks representing as much diversity as possible will be selected for the generation of (conditional)
gene knock-out (KO) strains. The KO strains will be evaluated for defects in BC assembly, morphology and
constriction as well as IVN formation, morphology and function in uptake of host cell nutrients. Altogether,
these data will help to resolve structure-function relationships and provide a hint at molecular interplay and
mechanisms underlying the various BC functions. These insights will guide future mechanistic studies and
development of specific new drugs.
概括
顶复门寄生虫是造成严重人类疾病的原因。耐药性和/或特异性差
不断破坏治疗这些疾病的治疗方案。为了确定新的药物靶点,
P.I. 的实验室致力于加深对寄生虫不同的细胞生物过程的理解
使用弓形虫作为模型 apicomplexan 从其宿主中提取。在这项提案中,他们将解决这些不同的问题
结构:基底复合体(BC),位于独特的皮质膜骨架的后端
这些寄生虫。从历史上看,对 BC 的兴趣源于其作为收缩环驱动细胞的功能
分配。基础复合体收缩是由一种尚未定义的独立于肌动蛋白的机制提供动力的。
肌球蛋白将其与宿主区分开来。最近,BC 还与其他流程相关联
例如管状水泡内液泡网络 (IVN) 的组装,该网络作为之间的交换器
寄生虫和宿主细胞,并且对于建立慢性感染也是必需的。其他收缩环
系统由 125 多种蛋白质组成,但已知的 BC 蛋白质只有 22 种。破译分子
为了了解 BC 多种功能背后的机制,建议通过内部集成来组装其完整的零件清单。
基于体内邻近性的生物素化方法(BioID)。由于BioID提供短距离交互信息
在寄生虫内部的原生复合体中,BC 架构的局部模型触手可及。为此,一半
已知的 BC 成分将在 BioID 中标记为诱饵。原理实验证明已经生成
一些新的见解强调了这种方法的可行性。定量质谱数据将
用于组装蛋白质-蛋白质相互作用(PPI)图,预计该图可以识别
基底复合体和与许多组件建立连接的节点。集群预计将与
通过(超)结构研究观察到不同的隔室。节点将突出潜在的关键组织者
(子)结构,这使它们成为功能研究的良好目标。最大化生物深度
根据该提案可以实际实现的见解,将根据以下因素优先考虑 10 名关键候选人
PPI 图谱位置和生物特征。它们在寄生虫发育过程中的时空动态
BC 内的定位将通过自身荧光和/或表位标签进行跟踪。可能发生动态变化
与 BC 的不同组装步骤和/或功能保持一致。此外,10名候选人中有5名
将选择代表尽可能多的多样性的主要选择来生成(有条件的)
基因敲除(KO)菌株。将评估 KO 菌株的 BC 组装、形态和
收缩以及 IVN 的形成、形态和吸收宿主细胞营养的功能。共,
这些数据将有助于解决结构-功能关系,并提供分子相互作用和
各种 BC 功能背后的机制。这些见解将指导未来的机制研究和
特定新药的开发。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Marc-Jan Gubbels其他文献
Marc-Jan Gubbels的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Marc-Jan Gubbels', 18)}}的其他基金
Defining the shared transcriptional network underlying Toxoplasma extracellular stress and stage transition
定义弓形虫细胞外应激和阶段转变背后的共享转录网络
- 批准号:
10682134 - 财政年份:2023
- 资助金额:
$ 23.48万 - 项目类别:
The Toxoplasma basal complex in cell division
细胞分裂中的弓形虫基础复合体
- 批准号:
10552584 - 财政年份:2020
- 资助金额:
$ 23.48万 - 项目类别:
The Toxoplasma basal complex in cell division
细胞分裂中的弓形虫基础复合体
- 批准号:
10328552 - 财政年份:2020
- 资助金额:
$ 23.48万 - 项目类别:
Proteomic mapping of differential secretion in Toxoplasma gondii
弓形虫差异分泌的蛋白质组图谱
- 批准号:
9228917 - 财政年份:2016
- 资助金额:
$ 23.48万 - 项目类别:
The Ca2+-sensing machinery operating on exocytosis in Toxoplasma
弓形虫胞吐作用中的 Ca2 感应机制
- 批准号:
9203658 - 财政年份:2016
- 资助金额:
$ 23.48万 - 项目类别:
The Ca2+-sensing machinery operating on exocytosis in Toxoplasma
弓形虫胞吐作用中的 Ca2 感应机制
- 批准号:
9927576 - 财政年份:2016
- 资助金额:
$ 23.48万 - 项目类别:
Dissecting the mechanism and regulation of Toxoplasma cytokinesis
剖析弓形虫胞质分裂的机制和调控
- 批准号:
9128297 - 财政年份:2015
- 资助金额:
$ 23.48万 - 项目类别:
Organization of Toxoplasma invasion and cell division by EF-hand proteins
EF-hand 蛋白组织弓形虫入侵和细胞分裂
- 批准号:
8661114 - 财政年份:2013
- 资助金额:
$ 23.48万 - 项目类别:
The role of the DOC2.1 protein in Toxoplasma gondii Ca2+- dependent exocytosis
DOC2.1蛋白在弓形虫Ca2依赖性胞吐作用中的作用
- 批准号:
8716658 - 财政年份:2013
- 资助金额:
$ 23.48万 - 项目类别:
Organization of Toxoplasma invasion and cell division by EF-hand proteins
EF-hand 蛋白组织弓形虫入侵和细胞分裂
- 批准号:
8569583 - 财政年份:2013
- 资助金额:
$ 23.48万 - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 23.48万 - 项目类别:
Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 23.48万 - 项目类别:
Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 23.48万 - 项目类别:
Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 23.48万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 23.48万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 23.48万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 23.48万 - 项目类别:
EU-Funded
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 23.48万 - 项目类别:
Standard Grant
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 23.48万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 23.48万 - 项目类别:
Research Grant














{{item.name}}会员




