Unifying Templates, Ontologies and Tools to Achieve Effective Annotation of Bioassay Protocols
统一模板、本体和工具以实现生物测定协议的有效注释
基本信息
- 批准号:9398728
- 负责人:
- 金额:$ 54.64万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-08-01 至 2021-07-31
- 项目状态:已结题
- 来源:
- 关键词:AcademiaAddressAdoptedAdoptionAreaBig DataBiological AssayBiomedical ResearchChemicalsCommunicationCommunitiesCompetenceComplexComputer softwareComputersControlled VocabularyCustomDataData SetData Storage and RetrievalDevelopmentEcosystemEffectivenessElementsEnsureExerciseFAIR principlesFeedbackFoundationsHourJournalsLearningLibrariansMachine LearningManualsMapsMetadataMethodsOntologyOutputParticipantPharmaceutical PreparationsPolishesProblem SolvingProcessPropertyProtocols documentationPubChemPublishingReadabilityResearchResearch PersonnelRetrievalRiskScienceScientistSemanticsSiteSoftware EngineeringSoftware ToolsSpecialistSpecific qualifier valueStandardizationStructureSuggestionSystemTechnologyTestingTextTimeTranslatingTweensUpdateVocabularyWorkbasecost effectivedata modelingdesigndrug discoverydrug mechanismexperienceexperimental studyimprovedimproved functioningin vivoinformatics trainingnovelopen sourcepractical applicationpredictive modelingrepositorytooluser-friendly
项目摘要
Project Summary
Biological assays are the foundation for developing chemical probes and drugs, but new Big Data approaches
– which have revolutionized other areas of biomedical science – have not yet advanced this early step of
biomedical research: analysis of assay data. The obstacle is that scientists specify their assays through text
descriptions written in scientific English, which need to be translated into standardized annotations readable by
computers. This lack of standardized and machine-readable assay descriptions is a major impediment to
manage, find, aggregate, compare, re-use, and learn from the ever-growing corpus of assays (e.g., >1.2
million in PubChem). Thus, there is a critical need for better annotation and curation tools for drug discovery
assays. However, the process to go from a simple text protocol to highly detailed machine-readable semantic
annotations is not trivial. Multiple tools and technologies are required: ontologies or the structured controlled
vocabularies; templates that map specific vocabularies to properties that are to be captured; and software tools
to actually apply these ontologies to a given text. Currently, each of these exists in isolation; yet, a bottleneck
in any one tool or technology, or a gap between the different pieces, disrupts the overall process, resulting in
poor or no annotation of the datasets. Here we propose a project to combine and integrate these three
technologies (which are also the core competencies of the three groups collaborating on this proposal). We
will deliver a novel, comprehensive, user-friendly data annotation and curation system that is highly
interconnected, encompassing the full cycle, and real-world practice, of required tasks and decisions, by all
parties within the `bioassay annotation ecosystem' (researchers performing curation, dedicated curators, IT
specialists, ontology owners, and librarians/repositories). The alliance between academic and commercial
collaborators, who already work together, will greatly benefit the project and minimize execution risk. Our
specific aims are to: (1) Develop a bioassay-specific template editor and templates by adopting the Stanford
(Center for Expanded Data Annotation and Retrieval, CEDAR) data model to the machine learning-based
curation tool BioAssay Express, to exploit the broad functionality of its data structures, tools and interfaces; (2)
Define and create an ontology update process and tool (`OntoloBridge') to support rapid feedback between
curators/users and ontology experts and enable semi-automated incorporation of suggestions for updates to
existing published ontologies; (3) Develop new tools to export annotated data into public repositories such as
PubChem; and (4) Evaluate our solution across diverse audiences (pharma, academia, repositories). The
system will improve bioassay curation efficiency, quality, and effectiveness, enabling scientists to generate
standardized annotations for their experiments to make these data FAIR (Findable, Accessible, Interoperable,
Reusable). We envision this suite of tools will encourage annotation earlier in the data lifecycle while still
supporting annotation at later stages (e.g., submission to repositories or to journals).
项目概要
生物测定是开发化学探针和药物的基础,但新的大数据方法
– 彻底改变了生物医学科学的其他领域 – 尚未推进这一早期步骤
生物医学研究:分析数据。障碍在于科学家通过文本指定他们的分析方法
用科学英语编写的描述,需要翻译成可读的标准化注释
电脑。缺乏标准化和机器可读的分析描述是一个主要障碍
管理、查找、聚合、比较、重用并从不断增长的检测语料库中学习(例如,>1.2
PubChem 百万)。因此,迫切需要更好的药物发现注释和管理工具
化验。然而,从简单的文本协议到高度详细的机器可读语义的过程
注释并不是微不足道的。需要多种工具和技术:本体论或结构化控制
词汇;将特定词汇表映射到要捕获的属性的模板;和软件工具
将这些本体论实际应用到给定的文本中。目前,这些因素中的每一个都是孤立存在的。却又遇到瓶颈
任何一种工具或技术,或者不同部分之间的差距,都会扰乱整个过程,导致
数据集的注释很差或没有。在这里我们提出一个项目来结合和整合这三个
技术(这也是协作此提案的三个小组的核心能力)。我们
将提供一个新颖、全面、用户友好的数据注释和管理系统,该系统高度
相互关联,涵盖所有所需任务和决策的整个周期和现实世界实践
“生物测定注释生态系统”内的各方(进行管理的研究人员、专门的管理人员、IT
专家、本体所有者和图书馆员/存储库)。学术与商业的联盟
已经一起工作的合作者将使项目受益匪浅,并将执行风险降至最低。我们的
具体目标是:(1)开发生物测定专用模板编辑器,并采用Stanford
(扩展数据注释和检索中心,CEDAR)以机器学习为基础的数据模型
管理工具 BioAssay Express,利用其数据结构、工具和界面的广泛功能; (2)
定义并创建本体更新流程和工具(“OntoloBridge”)以支持之间的快速反馈
策展人/用户和本体专家,并能够半自动地合并更新建议
现有已发布的本体; (3) 开发新工具将注释数据导出到公共存储库,例如
公共化学; (4) 在不同受众(制药界、学术界、存储库)中评估我们的解决方案。这
系统将提高生物测定的效率、质量和有效性,使科学家能够产生
为他们的实验标准化注释,使这些数据公平(Findable、Accessible、Interoperable、
可重复使用的)。我们预计这套工具将鼓励在数据生命周期的早期进行注释,同时仍然
支持后期注释(例如,提交到存储库或期刊)。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
BARRY A BUNIN其他文献
BARRY A BUNIN的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('BARRY A BUNIN', 18)}}的其他基金
Automated Molecular Identity Disambiguator (AutoMID)
自动分子身份消歧器 (AutoMID)
- 批准号:
10357906 - 财政年份:2020
- 资助金额:
$ 54.64万 - 项目类别:
Automated Molecular Identity Disambiguator (AutoMID)
自动分子身份消歧器 (AutoMID)
- 批准号:
10569639 - 财政年份:2020
- 资助金额:
$ 54.64万 - 项目类别:
Intelligent Chemical Structure Browser for Drug Discovery and Optimization
用于药物发现和优化的智能化学结构浏览器
- 批准号:
10241834 - 财政年份:2019
- 资助金额:
$ 54.64万 - 项目类别:
A Robust, Secure Framework to Effortlessly Bind Distributed Databases and Analysis Tools into Tightly Integrated Translational Drug Discovery Computational Platforms
一个强大、安全的框架,可以轻松地将分布式数据库和分析工具绑定到紧密集成的转化药物发现计算平台中
- 批准号:
10484172 - 财政年份:2019
- 资助金额:
$ 54.64万 - 项目类别:
Digital representation of chemical mixtures to aid drug discovery and formulation
化学混合物的数字表示以帮助药物发现和配制
- 批准号:
9902210 - 财政年份:2019
- 资助金额:
$ 54.64万 - 项目类别:
A Robust, Secure Framework to Effortlessly Bind Distributed Databases and Analysis Tools into Tightly Integrated Translational Drug Discovery Computational Platforms
一个强大、安全的框架,可以轻松地将分布式数据库和分析工具绑定到紧密集成的转化药物发现计算平台中
- 批准号:
10685358 - 财政年份:2019
- 资助金额:
$ 54.64万 - 项目类别:
Intelligent Chemical Structure Browser for Drug Discovery and Optimization
用于药物发现和优化的智能化学结构浏览器
- 批准号:
10386918 - 财政年份:2019
- 资助金额:
$ 54.64万 - 项目类别:
Novel deep learning strategy to better predict pharmacological properties of candidate drugs and focus discovery efforts
新颖的深度学习策略可以更好地预测候选药物的药理学特性并集中发现工作
- 批准号:
10133177 - 财政年份:2018
- 资助金额:
$ 54.64万 - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 54.64万 - 项目类别:
Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 54.64万 - 项目类别:
Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 54.64万 - 项目类别:
Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 54.64万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 54.64万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 54.64万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 54.64万 - 项目类别:
EU-Funded
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 54.64万 - 项目类别:
Standard Grant
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 54.64万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 54.64万 - 项目类别:
Research Grant