Exploring Single-Molecule Biophotonics for Ultrahigh-Resolution Spatiotemporal-Multiplexed Optical Microscopy
探索用于超高分辨率时空多重光学显微镜的单分子生物光子学
基本信息
- 批准号:9381934
- 负责人:
- 金额:$ 39.27万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-08-01 至 2018-07-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAgingArchitectureBiocompatible MaterialsBiologicalBiomedical ResearchBiomedical TechnologyBiophotonicsBrainBrain imagingComplexDevelopmentDimensionsDiseaseEngineeringFoundationsFutureHealthHomeostasisHumanImageImaging technologyImmune systemInvestigationLightMicrogliaMicroscopyMissionMolecularNational Institute of General Medical SciencesNeuroimmuneOpticsOrganismPathway interactionsPublic HealthResearchResearch SupportResolutionRoleSpecificitySpeedTechnologyTimeTissuesTranslatingWorkbioimagingbiological systemscomplex biological systemscomputer frameworkhigh throughput technologyinnovationinsightinstrumentationlight microscopynanoscalenext generationoptical imagingprogramssingle moleculespatiotemporaltool
项目摘要
Project Summary / Abstract
The distribution and interactions of molecules in three-dimensionally organized cellular networks are fundamen-
tal to the function of living systems. However, to date, a complete understanding of how local molecular mecha-
nisms are integrated over larger scales to support tissue functions, or contribute to disease initiation, is still
lacking. The challenges are mainly due to the limitations in imaging technology to provide molecular specificity,
nanometer-scale resolution, ultrafast speed across larger volumes of tissue. To address the challenge, the pro-
posed research program investigates the physical and engineering principles underlying optical imaging in com-
plex biological materials, and utilizes these principles to develop new biophotonic tools for next-generation light
microscopy. The objective of this proposal is to establish a research program on transformative bioimaging tech-
nology for high-throughput extraction of single-molecule information in biological systems. Specifically, the pro-
posed research program proceeds in three major directions to develop and apply enabling technologies for un-
derstanding the ultrastructural architecture, fast dynamics, and spatiotemporal-multiplexed molecular information
in complex biological systems:
1) Wavefront-engineered super-resolution microscopy to allow nanometer-scale imaging at and beyond the tis-
sue level with isotropic 3D resolution and large imaging depth;
2) High-resolution light-field microscopy and computational super-resolution imaging to enable ultrafast, live im-
aging of large-scale, volumetric biological dynamics and activities; and
3) Spatiotemporal-multiplexed imaging and a proof-of-principle investigation of the brain immune system.
The research integrates and translates innovations in physical concepts, computational frameworks, and ad-
vanced optical engineering and instrumentation into enabling technologies for biomedical investigations. The
significant impact of the work will advance the imaging power across unexplored regimes in both space and time
for a better understanding of the molecular basis for the functions of tissues and organisms. The spatiotemporal-
multiplexed imaging of the brain immune system will lay the technological foundation for future systematic inves-
tigations of the role of microglia in brain homeostasis, circuit formation, and disease initiation and protection. In
the long term, the proposed program is expected to not only provide new insights for brain study, but also open
up many new pathways to a broad range of biomedical research, and ultimately enable new discoveries to ad-
dress challenges in human well-being.
项目摘要/摘要
分子在三维组织的细胞网络中的分布和相互作用是研究的基础。
对生命系统的功能的理解。然而,到目前为止,对局部分子机制如何-
NISM在更大的范围内整合,以支持组织功能,或有助于疾病的启动,目前仍在
缺乏。挑战主要是由于成像技术在提供分子特异性方面的局限性,
纳米级的分辨率,超快的速度跨越更大体积的组织。为了应对这一挑战,亲-
提出的研究计划研究了复合光学成像的物理和工程原理。
Plex生物材料,并利用这些原理开发用于下一代光的新的生物光子工具
显微镜。这项建议的目标是建立一个关于变革性生物成像技术的研究计划-
用于在生物系统中高通量提取单分子信息的生物学。具体而言,支持-
Proposed研究计划在三个主要方向上进行,以开发和应用使能技术,以实现联合国
了解超微结构、快速动力学和时空复合的分子信息
在复杂的生物系统中:
1)波前设计的超分辨率显微镜允许在TIS和TIS之外进行纳米级成像-
三维分辨率各向同性、成像深度大的超声场水平;
2)高分辨率光场显微镜和计算超分辨率成像,以实现超快、实时成像
大规模、体积性生物动力学和活动的老化;以及
3)时空多路成像和脑免疫系统的原则性研究。
这项研究整合并翻译了物理概念、计算框架和广告-
先进的光学工程和仪器设备,使生物医学研究成为可能。这个
这项工作的重大影响将在空间和时间上推动未被探索的区域的成像能力
以更好地了解组织和有机体功能的分子基础。时空--
大脑免疫系统的多路成像将为未来的系统投资奠定技术基础--
小胶质细胞在脑内稳态、回路形成、疾病启动和保护中的作用。在……里面
从长远来看,拟议的计划不仅将为大脑研究提供新的见解,而且还将开放
为广泛的生物医学研究开辟了许多新途径,并最终使新发现成为可能--
人类福祉中的着装挑战。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Shu Jia其他文献
Shu Jia的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Shu Jia', 18)}}的其他基金
Functional screen for genetic causes of hypoplastic left heart syndrome
左心发育不良综合征遗传原因的功能筛查
- 批准号:
10572737 - 财政年份:2023
- 资助金额:
$ 39.27万 - 项目类别:
Exploring Single-Molecule Biophotonics for Ultrahigh-Resolution Spatiotemporal-Multiplexed Optical Microscopy
探索用于超高分辨率时空多重光学显微镜的单分子生物光子学
- 批准号:
10001545 - 财政年份:2018
- 资助金额:
$ 39.27万 - 项目类别:
Exploring Single-Molecule Biophotonics for Ultrahigh-Resolution Spatiotemporal-Multiplexed Optical Microscopy
探索用于超高分辨率时空多重光学显微镜的单分子生物光子学
- 批准号:
10251215 - 财政年份:2018
- 资助金额:
$ 39.27万 - 项目类别:
Toward Systems Biophotonics: Imaging Biology across High Dimensions and Scales
迈向系统生物光子学:高维度和尺度的生物学成像
- 批准号:
10406412 - 财政年份:2017
- 资助金额:
$ 39.27万 - 项目类别:
Toward Systems Biophotonics: Imaging Biology across High Dimensions and Scales
迈向系统生物光子学:高维度和尺度的生物学成像
- 批准号:
10668458 - 财政年份:2017
- 资助金额:
$ 39.27万 - 项目类别:
相似海外基金
Genetic Architecture of Aging-Related TDP-43 and Mixed Pathology Dementia
衰老相关 TDP-43 和混合病理痴呆的遗传结构
- 批准号:
10658215 - 财政年份:2023
- 资助金额:
$ 39.27万 - 项目类别:
Chromatin architecture disruption and the vicious cycle of aging.
染色质结构破坏和衰老的恶性循环。
- 批准号:
10901040 - 财政年份:2023
- 资助金额:
$ 39.27万 - 项目类别:
Impact of Reproductive Aging on the Functional and Structural Architecture of the Human Brain
生殖衰老对人脑功能和结构的影响
- 批准号:
10313384 - 财政年份:2021
- 资助金额:
$ 39.27万 - 项目类别:
Relationship between clonal architecture of aging hematopoiesis and the risk of developing age-associated myeloid cancers.
衰老造血的克隆结构与发生与年龄相关的骨髓癌的风险之间的关系。
- 批准号:
305881 - 财政年份:2014
- 资助金额:
$ 39.27万 - 项目类别:
Operating Grants
Nucleosome architecture in aging and nuclear receptor activation in the liver
衰老中的核小体结构和肝脏中的核受体激活
- 批准号:
9442316 - 财政年份:2014
- 资助金额:
$ 39.27万 - 项目类别:
Nucleosome architecture in aging and nuclear receptor activation in the liver
衰老中的核小体结构和肝脏中的核受体激活
- 批准号:
9026604 - 财政年份:2014
- 资助金额:
$ 39.27万 - 项目类别:
Nucleosome architecture in aging and nuclear receptor activation in the liver
衰老中的核小体结构和肝脏中的核受体激活
- 批准号:
8679341 - 财政年份:2014
- 资助金额:
$ 39.27万 - 项目类别:
Transcriptional Architecture and Chromatin Landscape of Circadian Clocks in Aging
衰老过程中昼夜节律时钟的转录结构和染色质景观
- 批准号:
8707931 - 财政年份:2013
- 资助金额:
$ 39.27万 - 项目类别:
Transcriptional Architecture and Chromatin Landscape of Circadian Clocks in Aging
衰老过程中昼夜节律时钟的转录结构和染色质景观
- 批准号:
9063026 - 财政年份:2013
- 资助金额:
$ 39.27万 - 项目类别:
Transcriptional Architecture and Chromatin Landscape of Circadian Clocks in Aging
衰老过程中昼夜节律时钟的转录结构和染色质景观
- 批准号:
8580066 - 财政年份:2013
- 资助金额:
$ 39.27万 - 项目类别: