Exploring Single-Molecule Biophotonics for Ultrahigh-Resolution Spatiotemporal-Multiplexed Optical Microscopy

探索用于超高分辨率时空多重光学显微镜的单分子生物光子学

基本信息

  • 批准号:
    10251215
  • 负责人:
  • 金额:
    $ 36.8万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-08-01 至 2022-07-31
  • 项目状态:
    已结题

项目摘要

Project Summary / Abstract The distribution and interactions of molecules in three-dimensionally organized cellular networks are fundamen- tal to the function of living systems. However, to date, a complete understanding of how local molecular mecha- nisms are integrated over larger scales to support tissue functions, or contribute to disease initiation, is still lacking. The challenges are mainly due to the limitations in imaging technology to provide molecular specificity, nanometer-scale resolution, ultrafast speed across larger volumes of tissue. To address the challenge, the pro- posed research program investigates the physical and engineering principles underlying optical imaging in com- plex biological materials, and utilizes these principles to develop new biophotonic tools for next-generation light microscopy. The objective of this proposal is to establish a research program on transformative bioimaging tech- nology for high-throughput extraction of single-molecule information in biological systems. Specifically, the pro- posed research program proceeds in three major directions to develop and apply enabling technologies for un- derstanding the ultrastructural architecture, fast dynamics, and spatiotemporal-multiplexed molecular information in complex biological systems: 1) Wavefront-engineered super-resolution microscopy to allow nanometer-scale imaging at and beyond the tis- sue level with isotropic 3D resolution and large imaging depth; 2) High-resolution light-field microscopy and computational super-resolution imaging to enable ultrafast, live im- aging of large-scale, volumetric biological dynamics and activities; and 3) Spatiotemporal-multiplexed imaging and a proof-of-principle investigation of the brain immune system. The research integrates and translates innovations in physical concepts, computational frameworks, and ad- vanced optical engineering and instrumentation into enabling technologies for biomedical investigations. The significant impact of the work will advance the imaging power across unexplored regimes in both space and time for a better understanding of the molecular basis for the functions of tissues and organisms. The spatiotemporal- multiplexed imaging of the brain immune system will lay the technological foundation for future systematic inves- tigations of the role of microglia in brain homeostasis, circuit formation, and disease initiation and protection. In the long term, the proposed program is expected to not only provide new insights for brain study, but also open up many new pathways to a broad range of biomedical research, and ultimately enable new discoveries to ad- dress challenges in human well-being.
项目总结/摘要 分子在三维组织的细胞网络中的分布和相互作用是基本的, 谈论生命系统的功能。然而,到目前为止,对局部分子机制的完整理解- nisms在更大的尺度上整合以支持组织功能,或有助于疾病的发生, 缺乏这些挑战主要是由于成像技术在提供分子特异性方面的局限性, 纳米级分辨率,超快速度跨越更大体积的组织。面对挑战,亲... 提出的研究计划调查的物理和工程原理光学成像的组合, 复杂的生物材料,并利用这些原则,开发新的生物光子工具,为下一代光 显微镜该提案的目的是建立一个关于变革性生物成像技术的研究计划, 生物系统中单分子信息的高通量提取技术。具体来说,亲- 提出的研究计划在三个主要方向进行开发和应用使能技术, 了解超微结构结构、快速动力学和时空多路复用分子信息 在复杂的生物系统中: 1)波前工程超分辨率显微镜,允许纳米级成像和超越时间, 使用具有各向同性3D分辨率和大成像深度的水平仪; 2)高分辨率光场显微镜和计算超分辨率成像,以实现超快,实时成像, 大规模、体积生物动力学和活动的老化; 3)脑免疫系统的时空多路复用成像和原理验证研究。 该研究整合并转化了物理概念,计算框架和广告中的创新。 先进的光学工程和仪器,使生物医学研究的技术。的 这项工作的重大影响将提高成像能力,使其能够跨越空间和时间上尚未探索的领域 更好地理解组织和生物体功能的分子基础。时空- 脑免疫系统的多重成像将为未来的系统研究奠定技术基础。 小胶质细胞在脑内稳态、回路形成和疾病引发和保护中的作用的触发。在 从长远来看,该计划不仅有望为大脑研究提供新的见解, 为广泛的生物医学研究开辟了许多新的途径,并最终使新的发现能够被广泛应用。 人类福祉的着装挑战。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Shu Jia其他文献

Shu Jia的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Shu Jia', 18)}}的其他基金

Functional screen for genetic causes of hypoplastic left heart syndrome
左心发育不良综合征遗传原因的功能筛查
  • 批准号:
    10572737
  • 财政年份:
    2023
  • 资助金额:
    $ 36.8万
  • 项目类别:
Exploring Single-Molecule Biophotonics for Ultrahigh-Resolution Spatiotemporal-Multiplexed Optical Microscopy
探索用于超高分辨率时空多重光学显微镜的单分子生物光子学
  • 批准号:
    10001545
  • 财政年份:
    2018
  • 资助金额:
    $ 36.8万
  • 项目类别:
Toward Systems Biophotonics: Imaging Biology across High Dimensions and Scales
迈向系统生物光子学:高维度和尺度的生物学成像
  • 批准号:
    10406412
  • 财政年份:
    2017
  • 资助金额:
    $ 36.8万
  • 项目类别:
Exploring Single-Molecule Biophotonics for Ultrahigh-Resolution Spatiotemporal-Multiplexed Optical Microscopy
探索用于超高分辨率时空多重光学显微镜的单分子生物光子学
  • 批准号:
    9381934
  • 财政年份:
    2017
  • 资助金额:
    $ 36.8万
  • 项目类别:
Toward Systems Biophotonics: Imaging Biology across High Dimensions and Scales
迈向系统生物光子学:高维度和尺度的生物学成像
  • 批准号:
    10668458
  • 财政年份:
    2017
  • 资助金额:
    $ 36.8万
  • 项目类别:

相似海外基金

Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
  • 批准号:
    MR/S03398X/2
  • 财政年份:
    2024
  • 资助金额:
    $ 36.8万
  • 项目类别:
    Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
  • 批准号:
    EP/Y001486/1
  • 财政年份:
    2024
  • 资助金额:
    $ 36.8万
  • 项目类别:
    Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
  • 批准号:
    2338423
  • 财政年份:
    2024
  • 资助金额:
    $ 36.8万
  • 项目类别:
    Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
  • 批准号:
    MR/X03657X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 36.8万
  • 项目类别:
    Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
  • 批准号:
    2348066
  • 财政年份:
    2024
  • 资助金额:
    $ 36.8万
  • 项目类别:
    Standard Grant
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
  • 批准号:
    2341402
  • 财政年份:
    2024
  • 资助金额:
    $ 36.8万
  • 项目类别:
    Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
  • 批准号:
    AH/Z505481/1
  • 财政年份:
    2024
  • 资助金额:
    $ 36.8万
  • 项目类别:
    Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10107647
  • 财政年份:
    2024
  • 资助金额:
    $ 36.8万
  • 项目类别:
    EU-Funded
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10106221
  • 财政年份:
    2024
  • 资助金额:
    $ 36.8万
  • 项目类别:
    EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
  • 批准号:
    AH/Z505341/1
  • 财政年份:
    2024
  • 资助金额:
    $ 36.8万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了