Network Modeling

网络建模

基本信息

项目摘要

V. TR&D3 - Abstract The single-cell imaging and biochemical data being provided by large-scale projects such as NIH LINCS highlight the need for models that can predict the dynamics of signaling proteins on the scale of a whole cell, encompassing potentially millions of individual macromolecules on timescales of minutes to hours. While TR&D2 made major progress in spatially realistic simulations of synaptic events and associated dendritic structural changes, as we seek to tackle problems at higher scales in a diversity of cells, the need to develop scalable approaches, albeit at lower resolution, has become apparent. In response to these needs, we are proposing a new TR&D, TR&D3, that will focus on the development of methods and software for development, management, efficient simulation, and analysis of network models of molecular interactions in the cell. Because of intrinsic limitations of the standard ordinary differential equation (ODE) approach in handling biological complexity, we will adopt and further develop rule-based modeling (RBM) tools, as exemplified by our widely used BioNetGen software, which provides an ideal foundation for such an effort. RBM encompasses ODE-based dynamics but is also much broader as it offers important advantages for highly complex systems: an object-oriented approach to the representation of biomolecules and their interactions that provides intuitive visualization capabilities, facilitates model annotation and comparison, and potentially supports simulation at a wide range of spatial resolutions. Network-free stochastic simulation of rule- based models provides an excellent starting point for further development of highly-efficient simulation methods capable of addressing the full range of spatial and molecular complexity. Our network modeling efforts are driven by six of the seven Driving Biomedical Projects and are tightly integrated with the efforts of the other TR&Ds. We aim to provide mechanistic insights across multiple scales and in many different cellular contexts, including neurons, immune cells, and cancer cells. Our aims are to (1) advance RBM technology to develop efficient cell-scale simulations in BioNetGen and NFsim, (2) further develop RuleBender as an interface to enable efficient visualization and model building, managing, and analyzing, and (3) to provide a robust software infrastructure that integrates RBM technology with others developed at MMBioS and enables broad usage by the community, providing access to Pittsburgh Supercomputing Center’s Bridges system for high-performance computing (HPC).
V. TR&D3 -摘要

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

James Faeder其他文献

James Faeder的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('James Faeder', 18)}}的其他基金

High Performance Computing for Multiscale Modeling of Biological Systems
用于生物系统多尺度建模的高性能计算
  • 批准号:
    10228743
  • 财政年份:
    2012
  • 资助金额:
    $ 17.94万
  • 项目类别:
Network Modeling
网络建模
  • 批准号:
    10228749
  • 财政年份:
    2012
  • 资助金额:
    $ 17.94万
  • 项目类别:

相似海外基金

How novices write code: discovering best practices and how they can be adopted
新手如何编写代码:发现最佳实践以及如何采用它们
  • 批准号:
    2315783
  • 财政年份:
    2023
  • 资助金额:
    $ 17.94万
  • 项目类别:
    Standard Grant
One or Several Mothers: The Adopted Child as Critical and Clinical Subject
一位或多位母亲:收养的孩子作为关键和临床对象
  • 批准号:
    2719534
  • 财政年份:
    2022
  • 资助金额:
    $ 17.94万
  • 项目类别:
    Studentship
A material investigation of the ceramic shards excavated from the Omuro Ninsei kiln site: Production techniques adopted by Nonomura Ninsei.
对大室仁清窑遗址出土的陶瓷碎片进行材质调查:野野村仁清采用的生产技术。
  • 批准号:
    20K01113
  • 财政年份:
    2020
  • 资助金额:
    $ 17.94万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
A comparative study of disabled children and their adopted maternal figures in French and English Romantic Literature
英法浪漫主义文学中残疾儿童及其收养母亲形象的比较研究
  • 批准号:
    2633211
  • 财政年份:
    2020
  • 资助金额:
    $ 17.94万
  • 项目类别:
    Studentship
A comparative study of disabled children and their adopted maternal figures in French and English Romantic Literature
英法浪漫主义文学中残疾儿童及其收养母亲形象的比较研究
  • 批准号:
    2436895
  • 财政年份:
    2020
  • 资助金额:
    $ 17.94万
  • 项目类别:
    Studentship
A comparative study of disabled children and their adopted maternal figures in French and English Romantic Literature
英法浪漫主义文学中残疾儿童及其收养母亲形象的比较研究
  • 批准号:
    2633207
  • 财政年份:
    2020
  • 资助金额:
    $ 17.94万
  • 项目类别:
    Studentship
A Study on Mutual Funds Adopted for Individual Defined Contribution Pension Plans
个人设定缴存养老金计划采用共同基金的研究
  • 批准号:
    19K01745
  • 财政年份:
    2019
  • 资助金额:
    $ 17.94万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
The limits of development: State structural policy, comparing systems adopted in two European mountain regions (1945-1989)
发展的限制:国家结构政策,比较欧洲两个山区采用的制度(1945-1989)
  • 批准号:
    426559561
  • 财政年份:
    2019
  • 资助金额:
    $ 17.94万
  • 项目类别:
    Research Grants
Securing a Sense of Safety for Adopted Children in Middle Childhood
确保被收养儿童的中期安全感
  • 批准号:
    2236701
  • 财政年份:
    2019
  • 资助金额:
    $ 17.94万
  • 项目类别:
    Studentship
Structural and functional analyses of a bacterial protein translocation domain that has adopted diverse pathogenic effector functions within host cells
对宿主细胞内采用多种致病效应功能的细菌蛋白易位结构域进行结构和功能分析
  • 批准号:
    415543446
  • 财政年份:
    2019
  • 资助金额:
    $ 17.94万
  • 项目类别:
    Research Fellowships
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了