Unlocking complex co-expression network using graphical models
使用图形模型解锁复杂的共表达网络
基本信息
- 批准号:9459529
- 负责人:
- 金额:$ 40万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-08-15 至 2021-07-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAdoptedAffectAlzheimer&aposs DiseaseAntineoplastic AgentsApplications GrantsBiologyBiometryBrainBreast Cancer PatientCancer PatientCellsCharacteristicsChronic DiseaseClinicalCluster AnalysisCollaborationsCommunicationComplexDataData AnalysesDevelopmentDiagnosisDiseaseDrug CombinationsDrug TargetingEffectivenessEnvironmental Risk FactorEtiologyGene ExpressionGene Expression ProfilingGenesGoalsGraphHereditary DiseaseHeterogeneityHumanImmune systemKnowledgeLabelMachine LearningMalignant NeoplasmsMedicineMethodologyMethodsModelingMolecularMolecular ProfilingMolecular TargetPathologyPathway AnalysisPatientsPharmaceutical PreparationsPopulationPublicationsQuantitative Trait LociRegulationResearchResearch ActivityResearch PersonnelResourcesScientistSkeletonSubgroupSystems BiologyTechniquesTechnologyTestingThe Cancer Genome AtlasTissue SampleTranslational ResearchUncertaintyanticancer researchbasebrain cellcancer subtypescell typedesigndisorder subtypedrug sensitivityeffective therapygenetic variantgenome-wideinsightinterestlearning strategylifestyle factorsmethod developmentneoplastic cellnervous system disordernovelpatient populationprecision medicineresearch and developmentskillsstatisticstechnique developmenttooltranscriptome sequencinguser friendly software
项目摘要
Many chronic diseases are complex and very heterogeneous. They can be affected by multiple genes in
combination with lifestyle and environmental factors, and patients of one disease can be divided into
subgroups, e.g., cancer subtypes or stages of Alzheimer's disease (AD). One can use the genome-wide
gene expression data to investigate these disease's molecular signatures, which may help understand
disease etiology and guide precise treatments. Graphical models are powerful tools to estimate complex
network interactions among a large number of genes. To develop biostatistical and machine learning
methods to estimate such directed graphical models using gene expression data is the primary goal of this
project. To this end, this project contains the following research activities: (1) Given known disease subtypes,
Aim 1 develops novel techniques to jointly estimate multiple undirected/directed graphical models with one
model per subtype. (2) In Aim 2, we consider the situation where disease subtypes are not defined a prior.
We propose to identify disease subtypes by gene expression clustering, and the uncertainty of clustering is
incorporated into the estimation of multiple directed graphical models in Aim 1. (3) Recent single cell RNAsequencing
technology enables researchers to profile multiple cells from the same patient. Aim 3 focuses on
estimating multiple directed graphical models (e.g., for multiple subclones of tumor cells, or multiple types of
brain cells) using single cell RNA-seq data of one patient. The effectiveness of the proposed graphical model
estimation methods will be demonstrated using cancer and AD data analysis. The research results have
great potential to offer new insights on the understanding and precise treatments of these diseases.
Furthermore, these methods are general enough to be applied to analyze omic data of other diseases as
well. The research team will disseminate computational efficient and user-friendly software packages,
research publications, academic presentations and collaborations with experts in cancer research and
neurological diseases.
许多慢性病是复杂的,并且非常异质。它们可以受到多种基因的影响,
结合生活方式和环境因素,一种疾病的患者可分为
子组,例如,阿尔茨海默病(AD)的癌症亚型或阶段。人们可以利用全基因组
基因表达数据来研究这些疾病的分子特征,这可能有助于了解
疾病的病因和指导精确治疗。图形模型是评估复杂的
大量基因之间的网络相互作用。发展生物统计学和机器学习
使用基因表达数据来估计这种有向图形模型的方法是本发明的主要目标。
项目为此,本项目包含以下研究活动:(1)鉴于已知的疾病亚型,
Aim 1开发了新的技术来联合估计多个无向/有向图模型,
每个子类型的模型。(2)在目标2中,我们考虑了疾病亚型没有被定义为先验的情况。
我们提出通过基因表达聚类来识别疾病亚型,并且聚类的不确定性是
纳入目标1中的多个有向图模型的估计。(3)单细胞RNA测序
这项技术使研究人员能够分析同一患者的多个细胞。目标3侧重于
估计多个有向图模型(例如,对于肿瘤细胞的多个亚克隆,或多种类型的
脑细胞)。所提出的图形模型的有效性
估计方法将使用癌症和AD数据分析来证明。研究结果
这是一个巨大的潜力,可以为这些疾病的理解和精确治疗提供新的见解。
此外,这些方法具有足够的通用性,可以应用于分析其他疾病的组学数据,
好.研究小组将分发计算效率高和用户友好的软件包,
研究出版物、学术报告以及与癌症研究专家的合作,
神经系统疾病
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
YUFENG LIU其他文献
YUFENG LIU的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('YUFENG LIU', 18)}}的其他基金
Unlocking complex co-expression network using graphical models
使用图形模型解锁复杂的共表达网络
- 批准号:
9979887 - 财政年份:2017
- 资助金额:
$ 40万 - 项目类别:
Flexible statistical machine learning techniques for cancer-related data
用于癌症相关数据的灵活统计机器学习技术
- 批准号:
8408819 - 财政年份:2010
- 资助金额:
$ 40万 - 项目类别:
Flexible statistical machine learning techniques for cancer-related data
用于癌症相关数据的灵活统计机器学习技术
- 批准号:
8603850 - 财政年份:2010
- 资助金额:
$ 40万 - 项目类别:
Flexible statistical machine learning techniques for cancer-related data
用于癌症相关数据的灵活统计机器学习技术
- 批准号:
8019592 - 财政年份:2010
- 资助金额:
$ 40万 - 项目类别:
相似海外基金
How novices write code: discovering best practices and how they can be adopted
新手如何编写代码:发现最佳实践以及如何采用它们
- 批准号:
2315783 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
One or Several Mothers: The Adopted Child as Critical and Clinical Subject
一位或多位母亲:收养的孩子作为关键和临床对象
- 批准号:
2719534 - 财政年份:2022
- 资助金额:
$ 40万 - 项目类别:
Studentship
A comparative study of disabled children and their adopted maternal figures in French and English Romantic Literature
英法浪漫主义文学中残疾儿童及其收养母亲形象的比较研究
- 批准号:
2633211 - 财政年份:2020
- 资助金额:
$ 40万 - 项目类别:
Studentship
A material investigation of the ceramic shards excavated from the Omuro Ninsei kiln site: Production techniques adopted by Nonomura Ninsei.
对大室仁清窑遗址出土的陶瓷碎片进行材质调查:野野村仁清采用的生产技术。
- 批准号:
20K01113 - 财政年份:2020
- 资助金额:
$ 40万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
A comparative study of disabled children and their adopted maternal figures in French and English Romantic Literature
英法浪漫主义文学中残疾儿童及其收养母亲形象的比较研究
- 批准号:
2436895 - 财政年份:2020
- 资助金额:
$ 40万 - 项目类别:
Studentship
A comparative study of disabled children and their adopted maternal figures in French and English Romantic Literature
英法浪漫主义文学中残疾儿童及其收养母亲形象的比较研究
- 批准号:
2633207 - 财政年份:2020
- 资助金额:
$ 40万 - 项目类别:
Studentship
The limits of development: State structural policy, comparing systems adopted in two European mountain regions (1945-1989)
发展的限制:国家结构政策,比较欧洲两个山区采用的制度(1945-1989)
- 批准号:
426559561 - 财政年份:2019
- 资助金额:
$ 40万 - 项目类别:
Research Grants
Securing a Sense of Safety for Adopted Children in Middle Childhood
确保被收养儿童的中期安全感
- 批准号:
2236701 - 财政年份:2019
- 资助金额:
$ 40万 - 项目类别:
Studentship
A Study on Mutual Funds Adopted for Individual Defined Contribution Pension Plans
个人设定缴存养老金计划采用共同基金的研究
- 批准号:
19K01745 - 财政年份:2019
- 资助金额:
$ 40万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Structural and functional analyses of a bacterial protein translocation domain that has adopted diverse pathogenic effector functions within host cells
对宿主细胞内采用多种致病效应功能的细菌蛋白易位结构域进行结构和功能分析
- 批准号:
415543446 - 财政年份:2019
- 资助金额:
$ 40万 - 项目类别:
Research Fellowships