Time-of-Flight PET for Improved Whole-Body Imaging

用于改善全身成像的飞行时间 PET

基本信息

  • 批准号:
    9283239
  • 负责人:
  • 金额:
    $ 53.55万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2015
  • 资助国家:
    美国
  • 起止时间:
    2015-05-01 至 2020-04-30
  • 项目状态:
    已结题

项目摘要

 DESCRIPTION (provided by applicant): This application is a competitive renewal of R01-CA-113941 and seeks to address the needs of heath care, particularly in the area of cancer. The overall goal of our project is to investigate and improve time-of-flight (TOF) positron emission tomographic (PET) imaging and to develop technology, both hardware and software, for the next generation of TOF PET imaging instruments. Inclusion of TOF information in PET reconstructions has been demonstrated to improve image quality through better signal-to-noise, faster and more uniform convergence, better lesion detectability, and more accurate quantification. The dependence of these metrics on TOF resolution has not been adequately quantified for realistic distributions, so we will study this to realize the maximum potential of TOF. Advanced technology for TOF PET is already under development, and we designed this application to carry on this work. In this renewal we propose to continue a systematic approach to image improvement that includes specific aims to develop new TOF detectors with improved timing and spatial resolutions, complete and evaluate waveform sampling electronics to extract maximal information from each interaction and to control calibrations more accurately, develop data correction methods to improve quantitative accuracy, and evaluate TOF imaging for an increased dynamic range of imaging conditions. We will continue to study the impact of TOF on clinical FDG imaging in terms of lesion detectability, quantitative accuracy and precision, and we will expand our investigation to assess the impact of TOF on lower count images with the goal of reducing FDG dose for clinical imaging, given the growing concern regarding diagnostic radiation doses. Better performance with low doses (or count statistics) enabled by TOF will also improve imaging for the expanding clinical research applications using longer-lived tracers that may result in lower count datasets. Our project will include well- controlled phantom studies and patient studies so that we can quantify the benefit of TOF for a wider range of clinically important conditions than previously studied, and so that we can determine which factors, from signal detection through image generation, are most important for improved TOF PET for the future.
 描述(由申请人提供):本申请是R 01-CA-113941的竞争性更新,旨在满足医疗保健需求,特别是癌症领域的需求。我们项目的总体目标是研究和改进飞行时间(TOF)正电子发射断层扫描(PET)成像,并为下一代TOF PET成像仪器开发硬件和软件技术。已证明在PET重建中包含TOF信息可通过更好的信噪比、更快和更均匀的收敛、更好的病变可检测性和更准确的量化来提高图像质量。这些指标对TOF分辨率的依赖性尚未充分量化为现实的分布,所以我们将研究这一点,以实现TOF的最大潜力。TOF PET的先进技术已经在开发中,我们设计了这个应用程序来进行这项工作。在这次更新中,我们建议继续采用系统的方法进行图像改进,包括开发具有改进的时间和空间分辨率的新TOF探测器,完成和评估波形采样电子设备以从每次相互作用中提取最大信息并更准确地控制校准,开发数据校正方法以提高定量精度,并评估TOF成像以增加成像条件的动态范围。我们将继续研究TOF对临床FDG成像在病变可检测性、定量准确性和精确度方面的影响,并将扩大研究范围,以评估TOF对低计数图像的影响,目的是降低临床成像的FDG剂量,因为人们越来越关注诊断辐射剂量。TOF实现的低剂量(或计数统计)的更好性能也将改善成像,用于使用寿命更长的示踪剂的扩展临床研究应用,这可能导致更低的计数数据集。我们的项目将包括良好控制的体模研究和患者研究,以便我们可以量化TOF在比以前研究的更广泛的临床重要条件下的益处,并且我们可以确定从信号检测到图像生成的哪些因素对于未来改进TOF PET最重要。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

JOEL S KARP其他文献

JOEL S KARP的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('JOEL S KARP', 18)}}的其他基金

PennPET Explorer Scanner With Scalable Axial Length for Total Body PET Imaging
PennPET Explorer 扫描仪具有可扩展的轴向长度,适用于全身 PET 成像
  • 批准号:
    10304161
  • 财政年份:
    2018
  • 资助金额:
    $ 53.55万
  • 项目类别:
PennPET Explorer Scanner With Scalable Axial Length for Total Body PET Imaging
PennPET Explorer 扫描仪具有可扩展的轴向长度,适用于全身 PET 成像
  • 批准号:
    10524762
  • 财政年份:
    2018
  • 资助金额:
    $ 53.55万
  • 项目类别:
PennPET Explorer Scanner With Scalable Axial Length for Total Body PET Imaging
PennPET Explorer 扫描仪具有可扩展的轴向长度,适用于全身 PET 成像
  • 批准号:
    10051411
  • 财政年份:
    2018
  • 资助金额:
    $ 53.55万
  • 项目类别:
Area B: Multi-Tracer Volumetric PET (MTV-PET) to Measure Tumor Glutamine and Glucose Metabolic Rates in a Single Imaging Session
B 区:多示踪体积 PET (MTV-PET) 在单次成像中测量肿瘤谷氨酰胺和葡萄糖代谢率
  • 批准号:
    9483034
  • 财政年份:
    2017
  • 资助金额:
    $ 53.55万
  • 项目类别:
Time-of-Flight PET for Improved Whole-Body Imaging
用于改善全身成像的飞行时间 PET
  • 批准号:
    9060277
  • 财政年份:
    2015
  • 资助金额:
    $ 53.55万
  • 项目类别:
Optical Barriers to Improve Performance of a Continuous Detector for Clinical PET
光屏障可提高临床 PET 连续检测器的性能
  • 批准号:
    8744691
  • 财政年份:
    2013
  • 资助金额:
    $ 53.55万
  • 项目类别:
Optical Barriers to Improve Performance of a Continuous Detector for Clinical PET
光屏障可提高临床 PET 连续检测器的性能
  • 批准号:
    8624119
  • 财政年份:
    2013
  • 资助金额:
    $ 53.55万
  • 项目类别:
Detector Concepts for Time-of-Flight PET
飞行时间 PET 探测器概念
  • 批准号:
    8692481
  • 财政年份:
    2013
  • 资助金额:
    $ 53.55万
  • 项目类别:
Detector Concepts for Time-of-Flight PET
飞行时间 PET 探测器概念
  • 批准号:
    8582753
  • 财政年份:
    2013
  • 资助金额:
    $ 53.55万
  • 项目类别:
Harmonized PET Reconstructions for Cancer Clinical Trials
癌症临床试验的统一 PET 重建
  • 批准号:
    8678877
  • 财政年份:
    2012
  • 资助金额:
    $ 53.55万
  • 项目类别:

相似海外基金

DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
  • 批准号:
    EP/Y029089/1
  • 财政年份:
    2024
  • 资助金额:
    $ 53.55万
  • 项目类别:
    Research Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
  • 批准号:
    2337776
  • 财政年份:
    2024
  • 资助金额:
    $ 53.55万
  • 项目类别:
    Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
  • 批准号:
    2338816
  • 财政年份:
    2024
  • 资助金额:
    $ 53.55万
  • 项目类别:
    Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
  • 批准号:
    2338846
  • 财政年份:
    2024
  • 资助金额:
    $ 53.55万
  • 项目类别:
    Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
  • 批准号:
    2348261
  • 财政年份:
    2024
  • 资助金额:
    $ 53.55万
  • 项目类别:
    Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
  • 批准号:
    2348346
  • 财政年份:
    2024
  • 资助金额:
    $ 53.55万
  • 项目类别:
    Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
  • 批准号:
    2348457
  • 财政年份:
    2024
  • 资助金额:
    $ 53.55万
  • 项目类别:
    Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
  • 批准号:
    2404989
  • 财政年份:
    2024
  • 资助金额:
    $ 53.55万
  • 项目类别:
    Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
  • 批准号:
    2339310
  • 财政年份:
    2024
  • 资助金额:
    $ 53.55万
  • 项目类别:
    Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
  • 批准号:
    2339669
  • 财政年份:
    2024
  • 资助金额:
    $ 53.55万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了