Mechanical Activation of NMDA Receptors
NMDA 受体的机械激活
基本信息
- 批准号:9329498
- 负责人:
- 金额:$ 23.93万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-08-15 至 2019-07-31
- 项目状态:已结题
- 来源:
- 关键词:AffectAlzheimer&aposs DiseaseApoptosisAstrocytesAutomobilesBiological ProcessBrainBrain ConcussionCalciumCell physiologyCellsCellular AssayCharacteristicsCuesDevelopmentDiffuse Axonal InjuryElectrophysiology (science)Excitatory SynapseFluorometryFunctional disorderGlutamate ReceptorGlutamatesHippocampus (Brain)Huntington DiseaseInflammationInjuryIon ChannelIon Channel ProteinKineticsKnowledgeLocationLongevityMechanicsMembraneMolecularMonitorN-Methyl-D-Aspartate ReceptorsNeuraxisNeurologic EffectNeuronsNeurotransmittersOptical MethodsParkinson DiseasePathologicPathologyPermeabilityPharmacologyPhysiologicalPhysiologyPlayProcessProteinsRattusReceptor SignalingRecombinantsRoleSchizophreniaShaken baby syndromeShapesSignal PathwaySignal TransductionSiteSpinal CordSpinal cord injurySportsStimulusStrokeSynapsesTestingTherapeuticTraumatic Brain InjuryWorkaddictionbiophysical propertiescell typechronic paincombatdesignexperienceexperimental studyin vivomechanical forcemechanical propertiesnervous system disorderneuropathologyneurotransmissionnovelnovel therapeutic interventionpatch clampprogramsreceptorresponsesevere psychiatric disordersynaptic functionsynaptogenesistumorvoltage
项目摘要
Project Summary/Abstract
In the central nervous system, proteins experience mechanical cues that vary widely across developmental
stage, cell type and location, and physiological state. When acting on membrane embedded ion-channel
proteins, mechanical forces can modulate the ionic flux produced by the physiological activator or can directly
gate the channel. In this application, we explore the hypothesis that mechanical forces can open NMDA
receptors in the absence of the endogenous neurotransmitter glutamate.
NMDA receptors are glutamate-gated excitatory receptors that are widely expressed at synaptic and
extrasynaptic sites in brain and spinal cord, where they play key roles in physiology and pathology of excitatory
synaptic development and plasticity. These key functions rely on unique biophysical properties such as, among
others, slow kinetics, large calcium permeability, voltage-dependent Mg2+ block. In this application, we propose
to pursue two interrelated aims. The first will be done in recombinant receptors and will examine the type and
intensity of force that can gate the channel, the biophysical properties of the force-induced current (kinetics,
conductance, permeability, etc.), and how the channel senses the mechanical cue. The second aim will be
done in endogenous receptors (primary cultured neurons) and will begin to explore possible roles of
mechanically gated NMDA receptor currents in physiologic and pathologic conditions. In both aims, we will use
electrophysiology and optical methods to monitor NMDA receptor response, total and calcium current, to
experimentally-controlled mechanical perturbations.
These experiments will delineate what kind of mechanical forces can activate NMDA receptors and how the
signals produced by force and by glutamate compare, and will help to predict the physiological and
pathological situations where mechanical forces can shape neuronal function specifically by gating NMDA
receptor currents. Given that the mechanosensitivity of NMDA receptor signals is yet uncharted, the results will
lay the groundwork necessary to understand how NMDA receptors contribute to the impact of mechanical
forces on synaptic function and dysfunction.
项目总结/摘要
在中枢神经系统中,蛋白质经历的机械线索在发育过程中变化很大。
阶段、细胞类型和位置以及生理状态。作用于膜包埋离子通道时
蛋白质,机械力可以调节由生理激活剂产生的离子通量,或者可以直接
打开通道在本应用中,我们探索了机械力可以打开NMDA的假设
受体的内源性神经递质谷氨酸的情况下。
NMDA受体是谷氨酸门控兴奋性受体,其广泛表达于突触和突触后膜。
突触外部位的大脑和脊髓,在那里他们发挥关键作用的生理和病理兴奋性
突触发育和可塑性。这些关键功能依赖于独特的生物物理特性,例如,
其他的,动力学缓慢,大的钙渗透性,电压依赖性Mg ~(2+)阻滞。在本申请中,我们提出
追求两个相互关联的目标。第一个将在重组受体中进行,并将检查类型和
可以门控通道的力的强度,力诱导电流的生物物理性质(动力学,
电导率、渗透率等),以及通道如何感知机械提示。第二个目标是
在内源性受体(原代培养的神经元)中完成,并将开始探索
机械门控NMDA受体电流的生理和病理条件。在这两个目标中,我们将使用
电生理学和光学方法监测NMDA受体反应,总电流和钙电流,
实验控制的机械扰动。
这些实验将阐明什么样的机械力可以激活NMDA受体,以及如何激活NMDA受体。
由力和谷氨酸产生的信号比较,将有助于预测生理和
机械力可以通过门控NMDA特异性地塑造神经元功能的病理情况
受体电流。考虑到NMDA受体信号的机械敏感性尚未被绘制,结果将
奠定必要的基础,了解NMDA受体如何有助于机械的影响,
对突触功能和功能障碍的影响。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Gabriela K Popescu其他文献
Gabriela K Popescu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Gabriela K Popescu', 18)}}的其他基金
NMDA receptors with restricted mobility of the ligand binding domain
配体结合域移动性受限的 NMDA 受体
- 批准号:
7578882 - 财政年份:2008
- 资助金额:
$ 23.93万 - 项目类别:
NMDA receptors with restricted mobility of the ligand binding domain
配体结合域移动性受限的 NMDA 受体
- 批准号:
7450118 - 财政年份:2008
- 资助金额:
$ 23.93万 - 项目类别:
NANOSCALE FLUCTUATIONS OF ERYTHROCYTE SUBDOMAINS IMAGED BY FOURIER PHASE MICROS
傅里叶相显微镜成像的红细胞亚域的纳米级波动
- 批准号:
7600894 - 财政年份:2007
- 资助金额:
$ 23.93万 - 项目类别:
HILBERT PHASE MICROSCOPY OF RED BLOOD CELLS AFFECTED BY ALCOHOLISM
受酒精影响的红细胞的希尔伯特相显微镜
- 批准号:
7600898 - 财政年份:2007
- 资助金额:
$ 23.93万 - 项目类别:
IMPROVED PERFORMANCE OF 4-PI MICROSCOPY USING HILBERT PHASE MICROSCOPY
使用希尔伯特相差显微镜提高 4-PI 显微镜的性能
- 批准号:
7600910 - 财政年份:2007
- 资助金额:
$ 23.93万 - 项目类别:
HILBERT PHASE MICROSCOPY FOR INVESTIGATION OF RAPID DYNAMICS IN BIOLOGICAL SYST
用于研究生物系统快速动力学的希尔伯特相显微镜
- 批准号:
7600895 - 财政年份:2007
- 资助金额:
$ 23.93万 - 项目类别:
FOURIER PHASE MICROSCOPY OF SICKLE CELL ANEMIA
镰状细胞性贫血的傅立叶相显微镜
- 批准号:
7600897 - 财政年份:2007
- 资助金额:
$ 23.93万 - 项目类别:














{{item.name}}会员




