Modeling Social Behavior for Healthcare Utilization in Depression

抑郁症患者医疗保健利用的社会行为建模

基本信息

  • 批准号:
    9313941
  • 负责人:
  • 金额:
    $ 45.8万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2016
  • 资助国家:
    美国
  • 起止时间:
    2016-03-01 至 2019-06-30
  • 项目状态:
    已结题

项目摘要

 DESCRIPTION (provided by applicant): Depression is highly prevalent, both in the US and worldwide. Among US adults, the estimated 12-month and lifetime prevalence rates are 8.3% and 19.2%, respectively. The World Health Organization considers major depressive disorder (MDD) as the third-highest cause of disease burden worldwide, and the highest cause of disease burden in the developed world. However, despite its prevalence and burden, depression remains significantly under-recognized and under-treated in all practice settings, including managed care where less than one third of adults with depression obtain appropriate professional treatment. Denial of illness and stigma are two primary barriers to proper identification and treatment of depression. Many individuals with depression are ashamed to seek out a mental health professional and consider depression a sign of personal weakness. In particular, "self-stigma" has been associated to affect adherence to psychiatric services, hope and quality of life negatively, and also poses as a barrier for social integration. Further, since self-stigma can exist without actual stigma from the public, and is more hidden and inside, it seems to be the worst form of stigma against people with depression and can directly affect the patients' over all well-being. Studies suggest that early recognition and treatment of depressive behavior and symptoms can improve social function, increase productivity, and decrease absenteeism in the workplace. However, recognition of depression, particularly in early stages, is still challenging. To address this problem, in this proposal we plan to develop effective methods for detection of depressive behavior, not only at an individual-level, but also at a community-level. The latter is highly pertinent because depression is significantly influenced by variations in social determinants and socio- ecological factors. In particular, we will leverage robust and longitudinal electronic health record (EHR) systems at Mayo Clinic and private insurance (UnitedHealthCare/Optum Labs) reimbursement and claims data along with online social media data from Twitter and PatientsLikeMe as well as geo-coded neighborhood and environmental data to develop a "big data" platform for identifying combinations of online socio-behavioral factors and neighborhood environmental conditions to enable innovative ways for detection of depressive behavior within communities and identify patterns and changes in health care utilization for depression across different communities and geographies within U.S.
 描述(申请人提供):抑郁症非常普遍,在美国和世界各地都是如此。在美国成年人中,估计12个月和终生患病率分别为8.3%和19.2%。世界卫生组织认为,严重抑郁障碍(MDD)是全球第三大疾病负担原因,也是发达国家疾病负担最高的原因。然而,尽管抑郁症的患病率和负担很大,但在所有实践环境中,包括管理性护理,只有不到三分之一的抑郁症成年人获得适当的专业治疗,抑郁症仍然得不到充分的认识和治疗。否认疾病和耻辱是正确识别和治疗抑郁症的两个主要障碍。许多抑郁症患者羞于寻求心理健康专家,并将抑郁症视为个人软弱的标志。特别是,“自我污名”已被认为对接受精神服务、希望和生活质量产生负面影响,并成为社会融合的障碍。此外,由于自我耻辱可以在没有来自公众的实际耻辱的情况下存在,而且更隐蔽和更内在,它似乎是对抑郁症患者最糟糕的耻辱形式,并可能直接影响患者的整体福祉。研究表明,及早识别和治疗抑郁行为和症状可以改善社会功能,提高工作效率,减少工作场所的缺勤。然而,对抑郁症的认识,特别是在早期阶段,仍然具有挑战性。为了解决这个问题,在这项建议中,我们计划开发有效的方法来检测抑郁行为,不仅在个人层面,而且在社区层面。后者是高度相关的,因为抑郁症受到社会决定因素和社会生态因素变化的显著影响。特别是,我们将利用Mayo诊所和私人保险(UnitedHealthcare/Optom Labs)强大和纵向的电子健康记录(EHR)系统报销和索赔数据,以及来自Twitter和PatientsLikeMe的在线社交媒体数据以及地理编码的社区和环境数据,开发一个用于识别在线社会行为因素和社区环境条件组合的“大数据”平台,以实现检测社区内抑郁行为的创新方法,并确定美国不同社区和地理地区对抑郁症的医疗利用模式和变化。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jyotishman Pathak其他文献

Jyotishman Pathak的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jyotishman Pathak', 18)}}的其他基金

Predicting Self-Harm, Suicide Attempt, and Suicidal Death using Longitudinal EHR, Claims and Mortality Data
使用纵向 EHR、索赔和死亡率数据预测自残、自杀未遂和自杀死亡
  • 批准号:
    10363697
  • 财政年份:
    2019
  • 资助金额:
    $ 45.8万
  • 项目类别:
4/4: Leveraging EHR-linked biobanks for deep phenotyping, polygenic risk score modeling, and outcomes analysis in psychiatric disorders
4/4:利用与 EHR 相关的生物库进行精神疾病的深度表型分析、多基因风险评分建模和结果分析
  • 批准号:
    10646457
  • 财政年份:
    2019
  • 资助金额:
    $ 45.8万
  • 项目类别:
Predicting Self-Harm, Suicide Attempt, and Suicidal Death using Longitudinal EHR, Claims and Mortality Data
使用纵向 EHR、索赔和死亡率数据预测自残、自杀未遂和自杀死亡
  • 批准号:
    10116483
  • 财政年份:
    2019
  • 资助金额:
    $ 45.8万
  • 项目类别:
4/4: Leveraging EHR-linked biobanks for deep phenotyping, polygenic risk score modeling, and outcomes analysis in psychiatric disorders
4/4:利用与 EHR 相关的生物库进行精神疾病的深度表型分析、多基因风险评分建模和结果分析
  • 批准号:
    10186828
  • 财政年份:
    2019
  • 资助金额:
    $ 45.8万
  • 项目类别:
4/4: Leveraging EHR-linked biobanks for deep phenotyping, polygenic risk score modeling, and outcomes analysis in psychiatric disorders
4/4:利用与 EHR 相关的生物库进行精神疾病的深度表型分析、多基因风险评分建模和结果分析
  • 批准号:
    10414057
  • 财政年份:
    2019
  • 资助金额:
    $ 45.8万
  • 项目类别:
Modeling Social Behavior for Healthcare Utilization in Depression
抑郁症患者医疗保健利用的社会行为建模
  • 批准号:
    9531455
  • 财政年份:
    2016
  • 资助金额:
    $ 45.8万
  • 项目类别:

相似海外基金

Collaborative Research: New to IUSE: EDU DCL:Diversifying Economics Education through Plug and Play Video Modules with Diverse Role Models, Relevant Research, and Active Learning
协作研究:IUSE 新增功能:EDU DCL:通过具有不同角色模型、相关研究和主动学习的即插即用视频模块实现经济学教育多元化
  • 批准号:
    2315700
  • 财政年份:
    2024
  • 资助金额:
    $ 45.8万
  • 项目类别:
    Standard Grant
Building a Calculus Active Learning Environment Equally Beneficial Across a Diverse Student Population
建立一个对不同学生群体同样有益的微积分主动学习环境
  • 批准号:
    2315747
  • 财政年份:
    2024
  • 资助金额:
    $ 45.8万
  • 项目类别:
    Standard Grant
Collaborative Research: New to IUSE: EDU DCL:Diversifying Economics Education through Plug and Play Video Modules with Diverse Role Models, Relevant Research, and Active Learning
协作研究:IUSE 新增功能:EDU DCL:通过具有不同角色模型、相关研究和主动学习的即插即用视频模块实现经济学教育多元化
  • 批准号:
    2315699
  • 财政年份:
    2024
  • 资助金额:
    $ 45.8万
  • 项目类别:
    Standard Grant
CyberCorps Scholarship for Service: Defending Cyberspace through Active Learning
Cyber​​Corps 服务奖学金:通过主动学习捍卫网络空间
  • 批准号:
    2336586
  • 财政年份:
    2024
  • 资助金额:
    $ 45.8万
  • 项目类别:
    Continuing Grant
Project Visibility: Understanding the Experiences of Black Students in Active Learning Mathematics Courses in a Hispanic-Serving Institution Context
项目可见性:了解黑人学生在西班牙裔服务机构背景下主动学习数学课程的经历
  • 批准号:
    2337029
  • 财政年份:
    2024
  • 资助金额:
    $ 45.8万
  • 项目类别:
    Standard Grant
Collaborative Research: New to IUSE: EDU DCL:Diversifying Economics Education through Plug and Play Video Modules with Diverse Role Models, Relevant Research, and Active Learning
协作研究:IUSE 新增功能:EDU DCL:通过具有不同角色模型、相关研究和主动学习的即插即用视频模块实现经济学教育多元化
  • 批准号:
    2315697
  • 财政年份:
    2024
  • 资助金额:
    $ 45.8万
  • 项目类别:
    Standard Grant
Collaborative Research: New to IUSE: EDU DCL:Diversifying Economics Education through Plug and Play Video Modules with Diverse Role Models, Relevant Research, and Active Learning
协作研究:IUSE 新增功能:EDU DCL:通过具有不同角色模型、相关研究和主动学习的即插即用视频模块实现经济学教育多元化
  • 批准号:
    2315696
  • 财政年份:
    2024
  • 资助金额:
    $ 45.8万
  • 项目类别:
    Standard Grant
Conference: Active Learning Communities in Biochemistry
会议:生物化学主动学习社区
  • 批准号:
    2411535
  • 财政年份:
    2024
  • 资助金额:
    $ 45.8万
  • 项目类别:
    Standard Grant
Collaborative Research: New to IUSE: EDU DCL:Diversifying Economics Education through Plug and Play Video Modules with Diverse Role Models, Relevant Research, and Active Learning
协作研究:IUSE 新增功能:EDU DCL:通过具有不同角色模型、相关研究和主动学习的即插即用视频模块实现经济学教育多元化
  • 批准号:
    2315698
  • 财政年份:
    2024
  • 资助金额:
    $ 45.8万
  • 项目类别:
    Standard Grant
Collaborative Research: New to IUSE: EDU DCL:Diversifying Economics Education through Plug and Play Video Modules with Diverse Role Models, Relevant Research, and Active Learning
协作研究:IUSE 新增功能:EDU DCL:通过具有不同角色模型、相关研究和主动学习的即插即用视频模块实现经济学教育多元化
  • 批准号:
    2315701
  • 财政年份:
    2024
  • 资助金额:
    $ 45.8万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了