Predicting Self-Harm, Suicide Attempt, and Suicidal Death using Longitudinal EHR, Claims and Mortality Data

使用纵向 EHR、索赔和死亡率数据预测自残、自杀未遂和自杀死亡

基本信息

  • 批准号:
    10116483
  • 负责人:
  • 金额:
    $ 68.62万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-06-24 至 2023-03-31
  • 项目状态:
    已结题

项目摘要

PROJECT ABSTRACT Suicide is one of the leading causes of death. As of 2015, annual age-adjusted suicide rate in the U.S. is 13.26 per 100,000 individuals, and on average, there are 121 suicides per day. While white males between 45 and 64 years of age are 4 times more likely than females to die by suicide, females attempt suicide 3 times as often as males. Recent data suggest that there are 20 times as many suicide attempts, which is generally considered a high and consistent risk factor for subsequent suicide. However, predicting and monitoring when someone will attempt self-harm and suicide has been nearly impossible. In this project, we plan to leverage large-scale, integrated electronic health record and claims from the New York City Clinical Data Research Network to study the suicidality in relation to emergency department (ED) visits or hospitalizations. In particular, using data on >10 million patients, we will develop novel NLP and machine learning models to identify patients at highest risk for self-harm, suicide attempt and suicide, and conduct a pilot study to assess the clinical utility of such models. We will also conduct a validation study using similar data from Kaiser Permanente Washington.
项目摘要 自杀是导致死亡的主要原因之一。截至2015年,美国的年年龄调整自杀率为13.26 平均每天有121人自杀。而45到64岁的白色男性 10岁以下的人自杀的可能性是女性的4倍,女性自杀未遂的可能性是女性的3倍。 男性。最近的数据表明,自杀企图是自杀未遂的20倍,这通常被认为是一个严重的问题。 高且持续的自杀风险因素。然而,预测和监测何时有人会 试图自残和自杀几乎是不可能的。在这个项目中,我们计划利用大规模, 整合电子健康记录和来自纽约市临床数据研究网络的索赔, 与急诊(艾德)就诊或住院相关的自杀倾向。特别是,使用数据> 10 我们将开发新的NLP和机器学习模型,以识别风险最高的患者, 自我伤害,自杀企图和自杀,并进行试点研究,以评估这些模型的临床效用。我们 还将使用来自Kaiser Permanente华盛顿的类似数据进行验证研究。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jyotishman Pathak其他文献

Jyotishman Pathak的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jyotishman Pathak', 18)}}的其他基金

Predicting Self-Harm, Suicide Attempt, and Suicidal Death using Longitudinal EHR, Claims and Mortality Data
使用纵向 EHR、索赔和死亡率数据预测自残、自杀未遂和自杀死亡
  • 批准号:
    10363697
  • 财政年份:
    2019
  • 资助金额:
    $ 68.62万
  • 项目类别:
4/4: Leveraging EHR-linked biobanks for deep phenotyping, polygenic risk score modeling, and outcomes analysis in psychiatric disorders
4/4:利用与 EHR 相关的生物库进行精神疾病的深度表型分析、多基因风险评分建模和结果分析
  • 批准号:
    10646457
  • 财政年份:
    2019
  • 资助金额:
    $ 68.62万
  • 项目类别:
4/4: Leveraging EHR-linked biobanks for deep phenotyping, polygenic risk score modeling, and outcomes analysis in psychiatric disorders
4/4:利用与 EHR 相关的生物库进行精神疾病的深度表型分析、多基因风险评分建模和结果分析
  • 批准号:
    10186828
  • 财政年份:
    2019
  • 资助金额:
    $ 68.62万
  • 项目类别:
4/4: Leveraging EHR-linked biobanks for deep phenotyping, polygenic risk score modeling, and outcomes analysis in psychiatric disorders
4/4:利用与 EHR 相关的生物库进行精神疾病的深度表型分析、多基因风险评分建模和结果分析
  • 批准号:
    10414057
  • 财政年份:
    2019
  • 资助金额:
    $ 68.62万
  • 项目类别:
Modeling Social Behavior for Healthcare Utilization in Depression
抑郁症患者医疗保健利用的社会行为建模
  • 批准号:
    9531455
  • 财政年份:
    2016
  • 资助金额:
    $ 68.62万
  • 项目类别:
Modeling Social Behavior for Healthcare Utilization in Depression
抑郁症患者医疗保健利用的社会行为建模
  • 批准号:
    9313941
  • 财政年份:
    2016
  • 资助金额:
    $ 68.62万
  • 项目类别:

相似海外基金

Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
  • 批准号:
    MR/S03398X/2
  • 财政年份:
    2024
  • 资助金额:
    $ 68.62万
  • 项目类别:
    Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
  • 批准号:
    EP/Y001486/1
  • 财政年份:
    2024
  • 资助金额:
    $ 68.62万
  • 项目类别:
    Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
  • 批准号:
    2338423
  • 财政年份:
    2024
  • 资助金额:
    $ 68.62万
  • 项目类别:
    Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
  • 批准号:
    MR/X03657X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 68.62万
  • 项目类别:
    Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
  • 批准号:
    2348066
  • 财政年份:
    2024
  • 资助金额:
    $ 68.62万
  • 项目类别:
    Standard Grant
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
  • 批准号:
    2341402
  • 财政年份:
    2024
  • 资助金额:
    $ 68.62万
  • 项目类别:
    Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
  • 批准号:
    AH/Z505481/1
  • 财政年份:
    2024
  • 资助金额:
    $ 68.62万
  • 项目类别:
    Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10107647
  • 财政年份:
    2024
  • 资助金额:
    $ 68.62万
  • 项目类别:
    EU-Funded
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10106221
  • 财政年份:
    2024
  • 资助金额:
    $ 68.62万
  • 项目类别:
    EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
  • 批准号:
    AH/Z505341/1
  • 财政年份:
    2024
  • 资助金额:
    $ 68.62万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了