4/4: Leveraging EHR-linked biobanks for deep phenotyping, polygenic risk score modeling, and outcomes analysis in psychiatric disorders
4/4:利用与 EHR 相关的生物库进行精神疾病的深度表型分析、多基因风险评分建模和结果分析
基本信息
- 批准号:10414057
- 负责人:
- 金额:$ 40.87万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-09-05 至 2024-05-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAnxietyAnxiety DisordersArchitectureBig DataClinicClinicalClinical DataCollaborationsComplexComputerized Medical RecordDataData SetDiseaseElectronic Health RecordEmploymentEnvironmental Risk FactorEuropeanEvaluationFeeling suicidalFundingGeneral PopulationGeneticGenetic DeterminismGenetic ResearchGenetic VariationGenotypeGeographyGoalsHealth Care CostsHealth systemHeritabilityHospitalizationIndividualKnowledgeLinkMachine LearningMajor Depressive DisorderMedicalMedical centerMental HealthMental disordersMethodsModelingNatural Language ProcessingNew York CityOutcomeParticipantPatientsPerformancePersonsPhenotypePopulationPopulation HeterogeneityResearchRiskRoleSamplingScoring MethodSiteSubstance Use DisorderSuicide attemptSymptomsTextVariantbasebiobankcare outcomesclinical careclinical practicecohortcomorbiditydeep learningdisorder riskfunctional disabilitygenetic epidemiologygenetic risk factorgenome wide association studygenome-widehealth care service utilizationimprovedinfancyinterestlarge datasetslearning strategymortalitymortality riskneuropsychiatric disorderpleiotropismpolygenic risk scorepopulation basedpredict clinical outcomepsychiatric comorbiditypsychogeneticsresponserisk predictionrisk stratificationsocial health determinantsstructured datasuicidal behaviortherapy resistanttraittreatment-resistant depression
项目摘要
PROJECT ABSTRACT
Major depressive disorder (MDD), anxiety disorders, and substance use disorders (SUDs) are common, complex
psychiatric traits that frequently co-occur and are associated with significant functional impairment, increased
healthcare utilization and cost, and higher mortality risk. Not only are these three conditions highly prevalent in
the general population and generate a huge societal burden, but recent studies by our team and others have
shown that shared covariance from common genetic variation significantly contributes to these psychiatric
comorbidities. Large data sets are needed to understand how the multifaceted interplay of genetics,
including polygenic risk scores (PRSs), and social determinants of health, such as employment and
educational attainment, can impact the risk of these psychiatric disorders and clinical outcomes, such
as multiple psychiatric hospitalizations. PRSs have shown potential for risk prediction, but the clinical utility
of PRSs for psychiatric conditions is just starting to be explored. Research utilizing Electronic Health Records
(EHRs) offers the promise of large data sets to examine these relationships in cohorts of patients seen in
clinical practice. However, the use of EHRs is in its infancy in the study of psychiatric disorders and their
treatment. This study will address critical knowledge gaps in “genotype-psychiatric phenotype”
relationships in large, demographically and geographically diverse population-based samples derived
from EHR-linked biobanks across four medical centers - Columbia, Cornell, Mayo Clinic and Mount Sinai.
Our objectives are to (1) develop improved methods for EHR phenotyping of MDD, anxiety, and SUDs, and
related outcomes based on a data-set of >30 million EHRs, (2) evaluate associations between PRSs and
these conditions, and (3) assess the association between PRSs and outcomes including treatment resistance
in MDD and healthcare utilization in patients with MDD, anxiety and SUD. The PRS analyses will utilize data
from biobanks with >50,000 persons with both EHR and GWAS data. Successful completion of this study will
substantially advance our understanding of the clinical utility of PRSs for commonly occurring psychiatric
disorders.
项目摘要
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jyotishman Pathak其他文献
Jyotishman Pathak的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jyotishman Pathak', 18)}}的其他基金
Predicting Self-Harm, Suicide Attempt, and Suicidal Death using Longitudinal EHR, Claims and Mortality Data
使用纵向 EHR、索赔和死亡率数据预测自残、自杀未遂和自杀死亡
- 批准号:
10363697 - 财政年份:2019
- 资助金额:
$ 40.87万 - 项目类别:
4/4: Leveraging EHR-linked biobanks for deep phenotyping, polygenic risk score modeling, and outcomes analysis in psychiatric disorders
4/4:利用与 EHR 相关的生物库进行精神疾病的深度表型分析、多基因风险评分建模和结果分析
- 批准号:
10646457 - 财政年份:2019
- 资助金额:
$ 40.87万 - 项目类别:
Predicting Self-Harm, Suicide Attempt, and Suicidal Death using Longitudinal EHR, Claims and Mortality Data
使用纵向 EHR、索赔和死亡率数据预测自残、自杀未遂和自杀死亡
- 批准号:
10116483 - 财政年份:2019
- 资助金额:
$ 40.87万 - 项目类别:
4/4: Leveraging EHR-linked biobanks for deep phenotyping, polygenic risk score modeling, and outcomes analysis in psychiatric disorders
4/4:利用与 EHR 相关的生物库进行精神疾病的深度表型分析、多基因风险评分建模和结果分析
- 批准号:
10186828 - 财政年份:2019
- 资助金额:
$ 40.87万 - 项目类别:
Modeling Social Behavior for Healthcare Utilization in Depression
抑郁症患者医疗保健利用的社会行为建模
- 批准号:
9531455 - 财政年份:2016
- 资助金额:
$ 40.87万 - 项目类别:
Modeling Social Behavior for Healthcare Utilization in Depression
抑郁症患者医疗保健利用的社会行为建模
- 批准号:
9313941 - 财政年份:2016
- 资助金额:
$ 40.87万 - 项目类别:
相似海外基金
Using generative AI combined with immersive technology to treat anxiety disorders
利用生成式人工智能结合沉浸式技术治疗焦虑症
- 批准号:
10109165 - 财政年份:2024
- 资助金额:
$ 40.87万 - 项目类别:
Launchpad
Integration of stepped care for Perinatal Mood and Anxiety Disorders among Women Living with HIV in Kenya
肯尼亚艾滋病毒感染妇女围产期情绪和焦虑障碍的分级护理一体化
- 批准号:
10677075 - 财政年份:2023
- 资助金额:
$ 40.87万 - 项目类别:
Understanding the Effects of Adolescent Nicotine Exposure on Increased Risk for Mood and Anxiety Disorders: Bridging the Gap from Pre-Clinical to Clinical Investigations
了解青少年尼古丁暴露对情绪和焦虑障碍风险增加的影响:弥合临床前研究与临床研究之间的差距
- 批准号:
478121 - 财政年份:2023
- 资助金额:
$ 40.87万 - 项目类别:
Operating Grants
Addressing perinatal mood and anxiety disorders (PMADs) through a doula intervention
通过导乐干预解决围产期情绪和焦虑障碍 (PMAD)
- 批准号:
10861961 - 财政年份:2023
- 资助金额:
$ 40.87万 - 项目类别:
Evaluation of the effectiveness and implementation of online group cognitive behavioral therapy for perinatal women with anxiety disorders.
评估在线团体认知行为治疗对患有焦虑症的围产期妇女的有效性和实施情况。
- 批准号:
22KJ3164 - 财政年份:2023
- 资助金额:
$ 40.87万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Investigating the error-related negativity and the balance N1 in children with anxiety disorders
调查焦虑症儿童的错误相关消极性和平衡 N1
- 批准号:
10685283 - 财政年份:2022
- 资助金额:
$ 40.87万 - 项目类别:
RESONY: Digital therapeutic to manage anxiety disorders
RESONY:管理焦虑症的数字疗法
- 批准号:
10042996 - 财政年份:2022
- 资助金额:
$ 40.87万 - 项目类别:
Grant for R&D
Augmenting the Efficacy of Benzodiazepine Taper with Telehealth-Delivered Cognitive Behavioral Therapy for Anxiety Disorders in Patients Using Prescription Opioids
通过远程医疗提供的认知行为疗法来增强苯二氮卓类药物逐渐减少的疗效,以治疗使用处方阿片类药物的焦虑症患者
- 批准号:
10705005 - 财政年份:2022
- 资助金额:
$ 40.87万 - 项目类别:
Developing an adjunctive mobile application for co-morbid substance use and anxiety disorders: comprehensive user experience testing of the Unwinding Anxiety application
开发针对共病药物使用和焦虑症的辅助移动应用程序:Unwinding Anxiety 应用程序的综合用户体验测试
- 批准号:
10597521 - 财政年份:2022
- 资助金额:
$ 40.87万 - 项目类别:
Investigating the role of neuroinflammation in environmental exposure-induced anxiety disorders
研究神经炎症在环境暴露诱发的焦虑症中的作用
- 批准号:
10573948 - 财政年份:2022
- 资助金额:
$ 40.87万 - 项目类别:














{{item.name}}会员




